We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Noninvasive Analysis of Mother's Blood Detects Fetal Chromosomal Abnormalities

By LabMedica International staff writers
Posted on 21 May 2014
Print article
Analysis of cell-free fetal DNA from maternal plasma carried out in a benchtop semiconductor sequencing platform (SSP) was shown to be an effective strategy for large-scale noninvasive screening for chromosomal aneuploidies in a clinical setting.

While chromosomal aneuploidies represent a major cause of fetal loss and birth defects, current methods for the prenatal diagnosis of aneuploidy require invasive methods that are associated with a risk of miscarriage and other complications.

A recently developed technique, massively parallel sequencing (MPS) of cell-free fetal DNA from maternal plasma, avoids the risk of fetal loss associated with more invasive diagnostic procedures.

Investigators at the University of California, San Diego (USA) employed an Ion Torrent sequencer, a benchtop semiconductor sequencing platform (SSP) developed by Life Technologies (Carlsbad, CA, USA), to perform MPS analysis on plasma samples from 2,275 pregnant subjects. Life Technologies is a member of the Thermo Fisher Scientific (Milford, MA, USA) family of companies.

The pool of 2,275 subjects contained a group of 515 women who had full karyotyping results and were used for retrospective analysis. The remaining 1,760 subjects without karyotyping were analyzed in a prospective study.

In the retrospective study, all 55 fetal trisomy 21 cases were identified using the SSP with a sensitivity and specificity of 99.94% and 99.46%, respectively. The SSP also detected 16 trisomy 18 cases with 100% sensitivity and 99.24% specificity and three trisomy 13 cases with 100% sensitivity and 100% specificity. Furthermore, 15 fetuses with sex chromosome aneuploidies were detected. In the prospective study, nine fetuses with trisomy 21, three with trisomy 18, three with trisomy 13, and one with 45,X were detected.

“To our knowledge, this is the first large-scale clinical study to systematically identify chromosomal aneuploidies based on cell-free fetal DNA using SSP,” said senior author Dr. Kang Zhang, professor of ophthalmology at the University of California, San Diego. “It provides an effective strategy for large-scale, noninvasive screenings in a clinical setting. It can be done in hospitals and outpatient clinics, more quickly and cheaply. We believe this approach could become the standard of care for screening of prenatal chromosomal abnormalities.”

The SSP study was published in the May 5, 2014, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:

University of California, San Diego
Life Technologies
Thermo Fisher Scientific


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.