Stool Samples Provide Marker for Bowel Disease
|
By LabMedica International staff writers Posted on 08 Apr 2014 |

Image: The SRI 8610C gas chromatograph (Photo courtesy of SRI Instruments).
A novel method for distinguishing different types of bowel disease using the stool samples of patients has been created which is an ideal noninvasive testing method for the diagnosis of gastro-intestinal diseases.
The method works by analyzing the chemical compounds emitted from the samples and could provide cheaper, quicker and more accurate diagnoses, at the point of care, for a group of diseases that have up until recently been very hard to differentiate.
Scientists at the University of the West of England (Bristol, UK) obtained 182 stool samples from patients with inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) between October 2010 and October 2011. IBS samples were obtained from patients with diarrhea predominant (IBS-D), constipation predominant (IBS-C), and the alternating between the two syndrome (IBS-A). IBD samples were obtained from patients with both ulcerative colitis (UC) and Crohn's disease (CD). Control samples were collected from healthy patients.
The test was based on the volatile organic compounds (VOCs) emitted from their stool samples, which act as a proxy for conditions in the gastrointestinal tract and provide a unique profile, or fingerprint, for the different bowel diseases. The investigators developed the method using an SRI 8610C gas chromatograph (SRI Instruments, Torrance, CA, USA) coupled to a metal oxide sensor system with pattern recognition software.
The results showed that patients with IBD could be distinguished from healthy controls with an accuracy of 79%. The method was able to distinguish IBD from IBS with an accuracy of 76%. Differentiating patients with IBS from healthy controls using VOCs appeared to be more difficult and could only be achieved with an accuracy of 54%. The reasons could be because IBS is a functional disorder as opposed to a structural disorder, so the changes in composition of VOCs in the stool samples would not be as great, producing a very similar pattern to healthy controls.
In conclusion, the authors stated that: “Our work has demonstrated that a low-cost device based on VOC analysis could be used to potentially diagnose, and differentiate, IBS and IBD at the point of care. We will continue to study fecal volatiles as a way of detecting IBS, IBD and other gastrointestinal conditions and continue to develop our techniques further. If we're able to produce results that exceed current commercial methods, then our technique could be added to the growing number of medical tests that use VOC analysis as a diagnostic tool.” The study was published on March 27, 2014, in the Journal of Breath Research.
Related Links:
University of the West of England
SRI Instruments
The method works by analyzing the chemical compounds emitted from the samples and could provide cheaper, quicker and more accurate diagnoses, at the point of care, for a group of diseases that have up until recently been very hard to differentiate.
Scientists at the University of the West of England (Bristol, UK) obtained 182 stool samples from patients with inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) between October 2010 and October 2011. IBS samples were obtained from patients with diarrhea predominant (IBS-D), constipation predominant (IBS-C), and the alternating between the two syndrome (IBS-A). IBD samples were obtained from patients with both ulcerative colitis (UC) and Crohn's disease (CD). Control samples were collected from healthy patients.
The test was based on the volatile organic compounds (VOCs) emitted from their stool samples, which act as a proxy for conditions in the gastrointestinal tract and provide a unique profile, or fingerprint, for the different bowel diseases. The investigators developed the method using an SRI 8610C gas chromatograph (SRI Instruments, Torrance, CA, USA) coupled to a metal oxide sensor system with pattern recognition software.
The results showed that patients with IBD could be distinguished from healthy controls with an accuracy of 79%. The method was able to distinguish IBD from IBS with an accuracy of 76%. Differentiating patients with IBS from healthy controls using VOCs appeared to be more difficult and could only be achieved with an accuracy of 54%. The reasons could be because IBS is a functional disorder as opposed to a structural disorder, so the changes in composition of VOCs in the stool samples would not be as great, producing a very similar pattern to healthy controls.
In conclusion, the authors stated that: “Our work has demonstrated that a low-cost device based on VOC analysis could be used to potentially diagnose, and differentiate, IBS and IBD at the point of care. We will continue to study fecal volatiles as a way of detecting IBS, IBD and other gastrointestinal conditions and continue to develop our techniques further. If we're able to produce results that exceed current commercial methods, then our technique could be added to the growing number of medical tests that use VOC analysis as a diagnostic tool.” The study was published on March 27, 2014, in the Journal of Breath Research.
Related Links:
University of the West of England
SRI Instruments
Latest Technology News
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
- Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
- Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
- AI Algorithm Assesses Progressive Decline in Kidney Function
- Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
- 3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
- Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting
- Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
- Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Channels
Molecular Diagnostics
view channel
Blood Immune Cell Analysis Detects Parkinson’s Before Symptoms Appear
Early diagnosis of Parkinson’s disease remains one of the greatest challenges in neurology. The condition, which affects nearly 12 million people globally, is typically identified only after significant... Read more
New Diagnostic Marker for Ovarian Cancer to Enable Early Disease Detection
Ovarian cancer remains the deadliest gynecological malignancy worldwide, responsible for more than 200,000 deaths annually. Unlike other cancers, ovarian cancer still lacks a reliable screening test.... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more








