Stool Samples Provide Marker for Bowel Disease
By LabMedica International staff writers Posted on 08 Apr 2014 |

Image: The SRI 8610C gas chromatograph (Photo courtesy of SRI Instruments).
A novel method for distinguishing different types of bowel disease using the stool samples of patients has been created which is an ideal noninvasive testing method for the diagnosis of gastro-intestinal diseases.
The method works by analyzing the chemical compounds emitted from the samples and could provide cheaper, quicker and more accurate diagnoses, at the point of care, for a group of diseases that have up until recently been very hard to differentiate.
Scientists at the University of the West of England (Bristol, UK) obtained 182 stool samples from patients with inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) between October 2010 and October 2011. IBS samples were obtained from patients with diarrhea predominant (IBS-D), constipation predominant (IBS-C), and the alternating between the two syndrome (IBS-A). IBD samples were obtained from patients with both ulcerative colitis (UC) and Crohn's disease (CD). Control samples were collected from healthy patients.
The test was based on the volatile organic compounds (VOCs) emitted from their stool samples, which act as a proxy for conditions in the gastrointestinal tract and provide a unique profile, or fingerprint, for the different bowel diseases. The investigators developed the method using an SRI 8610C gas chromatograph (SRI Instruments, Torrance, CA, USA) coupled to a metal oxide sensor system with pattern recognition software.
The results showed that patients with IBD could be distinguished from healthy controls with an accuracy of 79%. The method was able to distinguish IBD from IBS with an accuracy of 76%. Differentiating patients with IBS from healthy controls using VOCs appeared to be more difficult and could only be achieved with an accuracy of 54%. The reasons could be because IBS is a functional disorder as opposed to a structural disorder, so the changes in composition of VOCs in the stool samples would not be as great, producing a very similar pattern to healthy controls.
In conclusion, the authors stated that: “Our work has demonstrated that a low-cost device based on VOC analysis could be used to potentially diagnose, and differentiate, IBS and IBD at the point of care. We will continue to study fecal volatiles as a way of detecting IBS, IBD and other gastrointestinal conditions and continue to develop our techniques further. If we're able to produce results that exceed current commercial methods, then our technique could be added to the growing number of medical tests that use VOC analysis as a diagnostic tool.” The study was published on March 27, 2014, in the Journal of Breath Research.
Related Links:
University of the West of England
SRI Instruments
The method works by analyzing the chemical compounds emitted from the samples and could provide cheaper, quicker and more accurate diagnoses, at the point of care, for a group of diseases that have up until recently been very hard to differentiate.
Scientists at the University of the West of England (Bristol, UK) obtained 182 stool samples from patients with inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) between October 2010 and October 2011. IBS samples were obtained from patients with diarrhea predominant (IBS-D), constipation predominant (IBS-C), and the alternating between the two syndrome (IBS-A). IBD samples were obtained from patients with both ulcerative colitis (UC) and Crohn's disease (CD). Control samples were collected from healthy patients.
The test was based on the volatile organic compounds (VOCs) emitted from their stool samples, which act as a proxy for conditions in the gastrointestinal tract and provide a unique profile, or fingerprint, for the different bowel diseases. The investigators developed the method using an SRI 8610C gas chromatograph (SRI Instruments, Torrance, CA, USA) coupled to a metal oxide sensor system with pattern recognition software.
The results showed that patients with IBD could be distinguished from healthy controls with an accuracy of 79%. The method was able to distinguish IBD from IBS with an accuracy of 76%. Differentiating patients with IBS from healthy controls using VOCs appeared to be more difficult and could only be achieved with an accuracy of 54%. The reasons could be because IBS is a functional disorder as opposed to a structural disorder, so the changes in composition of VOCs in the stool samples would not be as great, producing a very similar pattern to healthy controls.
In conclusion, the authors stated that: “Our work has demonstrated that a low-cost device based on VOC analysis could be used to potentially diagnose, and differentiate, IBS and IBD at the point of care. We will continue to study fecal volatiles as a way of detecting IBS, IBD and other gastrointestinal conditions and continue to develop our techniques further. If we're able to produce results that exceed current commercial methods, then our technique could be added to the growing number of medical tests that use VOC analysis as a diagnostic tool.” The study was published on March 27, 2014, in the Journal of Breath Research.
Related Links:
University of the West of England
SRI Instruments
Latest Technology News
- Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
- 3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
- Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting
- Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
- Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
- Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes
- Wireless Sweat Patch Could Be Used as Diagnostic Test for Cystic Fibrosis
- New Method Advances AI Reliability with Applications in Medical Diagnostics
- Self-Powered Microneedle Patch Collects Biomarker Samples Without Drawing Blood
Channels
Molecular Diagnostics
view channel
Groundbreaking Tool Improves Genetic Testing Accuracy
Genetic testing plays a crucial role in diagnosing disease, but its accuracy depends heavily on understanding how common certain genetic variants are across populations. Most current databases calculate... Read more
Biomarker Blood Test Could Predict Development of Long COVID
Long COVID continues to challenge scientists and clinicians with its complex and poorly understood symptoms that can persist long after an acute SARS-CoV-2 infection. While most immune responses normalize... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more
Luminescent Probe Measures Immune Cell Activity in Real Time
The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more
Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
When a patient enters the emergency department in critical condition, clinicians must rapidly decide whether the patient has an infection, whether it is bacterial or viral, and whether immediate treatment... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
AI Tool Detects Hidden Warning Signs of Disease Inside Single Cells
Detecting early signs of disease at the cellular level remains a major challenge in medicine. Subtle molecular changes often precede visible symptoms, yet these early indicators are difficult to detect... Read more
Automated Tool Detects Early Warning Signs of Breast Cancer
Branching is a vital biological process that enables organs like the lungs, kidneys, and breasts to perform complex functions. In female mammary glands, most branching occurs after birth—during puberty... Read more
New Software Tool Improves Analysis of Complex Spatial Data from Tissues
Advances in spatial omics have enabled scientists to map the distribution of RNA and proteins within intact tissues, offering powerful insights into how cells behave and interact in both health and disease.... Read more
AI Tool Helps Surgeons Distinguish Aggressive Glioblastoma from Other Brain Cancers in Real-Time
Accurately distinguishing between brain tumors during surgery is one of the toughest diagnostic challenges in neuro-oncology. Glioblastoma, the most common and aggressive brain tumor, often appears similar... Read moreTechnology
view channel
Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
Influenza is one of the most dangerous infectious diseases worldwide, claiming around half a million lives each year. What makes it particularly insidious is that flu viruses are contagious even before... Read more
3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
Early-stage disease diagnosis depends on the ability to detect biomarkers with exceptional sensitivity and precision. However, traditional biosensing technologies struggle with achieving this at the micro-scale,... Read moreIndustry
view channel
Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders
Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes
Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
GSI Group Acquires Blood Processing Equipment Manufacturer GenesisBPS
Blood processing and storage are vital to healthcare and clinical practice, ensuring safe transfusions and cellular therapies. However, hospitals and laboratories worldwide face challenges in maintaining... Read more