Genetic Screening Can Identify Men at Higher Risk of Aggressive Prostate Cancer
By LabMedica International staff writers Posted on 03 Mar 2014 |
Genetic mutations have been identified that facilitate screening of men for prostate cancer, particularly men with a family history of the disease, to identify those who are at higher risk of aggressive forms and in need of lifelong monitoring.
Scientists at The Institute of Cancer Research, (ICR; London, UK) found 13 mutations in known cancer genes that predicted the development of the prostate cancer (PrCa). The findings demonstrate not only that some men have a genetic profile that puts them at higher risk of PrCa, but that particular genetic profiles match to a higher risk of advanced, invasive disease. “The minefield of PrCa diagnosis is one of the biggest hurdles facing treatment of the disease today. Current tests fail to differentiate between aggressive cancers that could go on to kill and cancers that may never cause any harm. This lack of clarity means that too often men and their doctors are left having to make incredibly difficult decisions on whether to treat the disease or not," said Dr. Iain Frame, Director of Research at Prostate Cancer UK.
In the study, published by Leongamornlert et al. in the British Journal of Cancer, online ahead of print February 20, 2014, the researchers examined men with a history of three or more cases of PrCa in their close family, in order to mirror use of family history as a criterion for current gene testing programs in breast cancer. Blood samples from 191 men with PrCa at several different UK centers were analyzed. New “second generation” DNA sequencing technologies were used to assess mutations in 22 different known cancer genes simultaneously, opening up, for the first time, the prospect of rapid genetic screening for PrCa for a wide range of mutations.
The results showed 13 loss-of-function mutations among 8 DNA-repair genes. The eight genes were BRCA1 and BRCA2 (already routinely tested for in women with a strong family history of breast or ovarian cancer) plus ATM, CHEK2, BRIP1, MUTYH, PALB2, and PMS2. Men with ANY of these 13 mutations were much more likely than those without to develop an advanced, invasive form of cancer, which spread to the lymph nodes or other parts of the body, and to die from the disease.
“Our study shows the potential benefit of putting PrCa on a par with cancers such as breast cancer when it comes to genetic testing. Although ours was a small, first-stage study, we proved that testing for known cancer mutations can pick out men who are destined to have a more aggressive form of PrCa", said study co-leader Prof. Ros Eeles, professor of Oncogenics at the ICR. Fellow study co-leader Dr. Zsofia Kote-Jarai, senior staff scientist at the ICR, added, “One of the important messages to come out of our study is that mutations to at least eight genes—and probably many more—greatly increase the risk of aggressive PrCa. Any future screening program would need to assess as many of these genes as possible.”
Related Links:
Institute of Cancer Research
Scientists at The Institute of Cancer Research, (ICR; London, UK) found 13 mutations in known cancer genes that predicted the development of the prostate cancer (PrCa). The findings demonstrate not only that some men have a genetic profile that puts them at higher risk of PrCa, but that particular genetic profiles match to a higher risk of advanced, invasive disease. “The minefield of PrCa diagnosis is one of the biggest hurdles facing treatment of the disease today. Current tests fail to differentiate between aggressive cancers that could go on to kill and cancers that may never cause any harm. This lack of clarity means that too often men and their doctors are left having to make incredibly difficult decisions on whether to treat the disease or not," said Dr. Iain Frame, Director of Research at Prostate Cancer UK.
In the study, published by Leongamornlert et al. in the British Journal of Cancer, online ahead of print February 20, 2014, the researchers examined men with a history of three or more cases of PrCa in their close family, in order to mirror use of family history as a criterion for current gene testing programs in breast cancer. Blood samples from 191 men with PrCa at several different UK centers were analyzed. New “second generation” DNA sequencing technologies were used to assess mutations in 22 different known cancer genes simultaneously, opening up, for the first time, the prospect of rapid genetic screening for PrCa for a wide range of mutations.
The results showed 13 loss-of-function mutations among 8 DNA-repair genes. The eight genes were BRCA1 and BRCA2 (already routinely tested for in women with a strong family history of breast or ovarian cancer) plus ATM, CHEK2, BRIP1, MUTYH, PALB2, and PMS2. Men with ANY of these 13 mutations were much more likely than those without to develop an advanced, invasive form of cancer, which spread to the lymph nodes or other parts of the body, and to die from the disease.
“Our study shows the potential benefit of putting PrCa on a par with cancers such as breast cancer when it comes to genetic testing. Although ours was a small, first-stage study, we proved that testing for known cancer mutations can pick out men who are destined to have a more aggressive form of PrCa", said study co-leader Prof. Ros Eeles, professor of Oncogenics at the ICR. Fellow study co-leader Dr. Zsofia Kote-Jarai, senior staff scientist at the ICR, added, “One of the important messages to come out of our study is that mutations to at least eight genes—and probably many more—greatly increase the risk of aggressive PrCa. Any future screening program would need to assess as many of these genes as possible.”
Related Links:
Institute of Cancer Research
Latest Molecular Diagnostics News
- Blood-Based Biomarkers Could Detect Alzheimer's as Early as Middle Age
- RNA Screening Test Could Detect Colon Polyps Before They Become Cancerous
- New RT-LAMP Assay Offers Affordable and Reliable Pathogen Detection for Resource-Limited Settings
- New Biomarker Panel to Enable Early Detection of Pancreatic Cancer
- Ultrarapid Whole Genome Sequencing for Neonatal and Pediatric Patients Delivers Results In 48 Hours
- AI-Enabled Blood Test Demonstrates Diagnostic, Prognostic and Predictive Utility Across Cancer Continuum
- DNA Methylation Signatures of Aging Could Help Assess Mortality Risk
- Molecular Diagnostics System Provides Lab-Quality Results at POC
- Cellular Signature Identifies Patients with Treatment Resistant Prostate Tumors
- MCED Could Be Valuable Supplement to Traditional Cancer Screening Approaches
- Newly-Cleared Technology a Game Changer for Diagnosis of Lyme Disease
- Innovative Liquid Biopsy Test Uses RNA to Detect Early-Stage Cancer
- Rapid Tests for Chagas Disease Improves Diagnostic Access
- Simple Blood Test to Predict Alzheimer’s Clinical Progression in Earliest Stages
- Saliva Test Could Identify People Genetically Susceptible to Type 2 Diabetes
- Pioneering Analyzer with Advanced Biochip Technology Sets New Standard in Lab Diagnostics
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer
Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more
Groundbreaking Lateral Flow Test Quantifies Nucleosomes in Whole Venous Blood in Minutes
Diagnosing immune disruptions quickly and accurately is crucial in conditions such as sepsis, where timely intervention is critical for patient survival. Traditional testing methods can be slow, expensive,... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
Novel Method Tracks Cancer Treatment in Cells Without Dyes or Labels
Multiple myeloma is a blood cancer that affects plasma cells in the bone marrow, leading to abnormal protein production, weakened immunity, and organ damage. Traditional methods for evaluating myeloma... Read more
New AI-Based Method Effectively Identifies Disease Phenotypes Using Light-Based Imaging
Precision medicine, where treatment strategies are tailored to a patient's unique disease characteristics, holds great promise for cancer therapy. However, identifying disease phenotypes, which are critical... Read more
AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care
Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read moreTechnology
view channel
Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation
Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Ultra-Sensitive Biosensor Based on Light and AI Enables Early Cancer Diagnosis
Cancer diagnosis is often delayed due to the difficulty in detecting early-stage cancer markers. In particular, the concentration of methylated DNA in the bloodstream during the early stages of cancer... Read moreIndustry
view channel
BD Biosciences & Diagnostic Solutions to Merge with Waters
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) and Waters Corporation (Milford, MA, USA) have entered into a definitive agreement to combine BD's Biosciences & Diagnostic Solutions... Read more