Leucocytes Identified by Automated Digital Morphology System
|
By LabMedica International staff writers Posted on 31 Oct 2013 |

Image: CellaVision DM96 Digital Cell Morphology System (Photo courtesy of CellaVision).
An automated digital cell morphology analyzer for determining leukocyte differential counts in peripheral blood smears (PBS) has been evaluated in a clinical laboratory.
The differential counting of peripheral blood leukocytes is one of the most frequently ordered laboratory tests by clinicians as it is an important test for the diagnosis of various hematologic diseases and systemic diseases. Improvements in laboratory technologies have benefited from the development of automated blood cell counters that have begun to replace the manual microscopic counting that is still performed in most laboratories.
Laboratory scientists at the University of Ulsan College of Medicine and Asan Medical Center (Seoul, Republic of Korea) examined a total of 308 peripheral blood samples with quantitative or qualitative abnormalities, for which complete blood counts had been ordered by clinicians. These samples were initially analyzed using the automatic blood cell analyzer Sysmex XE-2100 (Sysmex; Kobe, Japan), and the total leukocyte and differential counts were determined. Manual microscopic differential counts of 100 cells on each slide were separately performed by two independent well-trained laboratory technologists.
The slides were labeled and loaded into the CellaVision DM96 system (CellaVision AB; Lund, Sweden) after manual microscopic differential counting. In cases with a buffy coat preparation, the slides were prepared using samples prior to buffy coat preparation and labeled in the CellaVision DM96 system To evaluate the clinical relevance of the extension of cell counts up to 300 or 500 cells, which is the provided function by the CellaVision DM96 system, in the samples with low leukocyte count of less than 1,000 cells/μL, correlation analysis between the CellaVision DM96 system and manual count was performed.
The correlation coefficients between two methods were consistently high, ranged from 0.864 to 0.992. The sensitivity, specificity, positive predictive value, negative predictive values of this system for the identification of abnormalities was consistently high, especially for blast cells. When the instrument was instructed to count 300 or 500 cells from the operator, better performance was demonstrated than 100 cells in the leukopenic samples by sacrificing only 40 seconds/slide on average.
The authors concluded that the CellaVision DM96 system is useful in the clinical laboratory providing comparative accuracy compared with manual counts in samples with abnormalities. In leukopenic samples, report quality can be improved by ordering to count 300 or 500 cells from the operator without severe prolongation of turnaround time. The study was published on the October 2013 issue of the International Journal of Laboratory Hematology .
Related Links:
University of Ulsan College of Medicine and Asan Medical Center
Sysmex
CellaVision AB
The differential counting of peripheral blood leukocytes is one of the most frequently ordered laboratory tests by clinicians as it is an important test for the diagnosis of various hematologic diseases and systemic diseases. Improvements in laboratory technologies have benefited from the development of automated blood cell counters that have begun to replace the manual microscopic counting that is still performed in most laboratories.
Laboratory scientists at the University of Ulsan College of Medicine and Asan Medical Center (Seoul, Republic of Korea) examined a total of 308 peripheral blood samples with quantitative or qualitative abnormalities, for which complete blood counts had been ordered by clinicians. These samples were initially analyzed using the automatic blood cell analyzer Sysmex XE-2100 (Sysmex; Kobe, Japan), and the total leukocyte and differential counts were determined. Manual microscopic differential counts of 100 cells on each slide were separately performed by two independent well-trained laboratory technologists.
The slides were labeled and loaded into the CellaVision DM96 system (CellaVision AB; Lund, Sweden) after manual microscopic differential counting. In cases with a buffy coat preparation, the slides were prepared using samples prior to buffy coat preparation and labeled in the CellaVision DM96 system To evaluate the clinical relevance of the extension of cell counts up to 300 or 500 cells, which is the provided function by the CellaVision DM96 system, in the samples with low leukocyte count of less than 1,000 cells/μL, correlation analysis between the CellaVision DM96 system and manual count was performed.
The correlation coefficients between two methods were consistently high, ranged from 0.864 to 0.992. The sensitivity, specificity, positive predictive value, negative predictive values of this system for the identification of abnormalities was consistently high, especially for blast cells. When the instrument was instructed to count 300 or 500 cells from the operator, better performance was demonstrated than 100 cells in the leukopenic samples by sacrificing only 40 seconds/slide on average.
The authors concluded that the CellaVision DM96 system is useful in the clinical laboratory providing comparative accuracy compared with manual counts in samples with abnormalities. In leukopenic samples, report quality can be improved by ordering to count 300 or 500 cells from the operator without severe prolongation of turnaround time. The study was published on the October 2013 issue of the International Journal of Laboratory Hematology .
Related Links:
University of Ulsan College of Medicine and Asan Medical Center
Sysmex
CellaVision AB
Latest Hematology News
- ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
- Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
- Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
- Platelets Could Improve Early and Minimally Invasive Detection of Cancer
- Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
- Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
- First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes

- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
New Biomarker Panel to Improve Heart Failure Diagnosis in Women
Heart failure affects millions worldwide, yet many women are still misdiagnosed or diagnosed too late. Although heart failure broadly means the heart cannot pump enough blood to the body’s cells, its two... Read more
Dual Blood Biomarkers Improve ALS Diagnostic Accuracy
Diagnosing amyotrophic lateral sclerosis (ALS) remains difficult even with advanced imaging and genetic tools, especially when clinicians must distinguish it from other neurodegenerative conditions that... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
AI Tool Improves Accuracy of Skin Cancer Detection
Diagnosing melanoma accurately in people with darker skin remains a longstanding challenge. Many existing artificial intelligence (AI) tools detect skin cancer more reliably in lighter skin tones, often... Read more
Highly Sensitive Imaging Technique Detects Myelin Damage
Damage to myelin—the insulating layer that helps brain cells function efficiently—is a hallmark of many neurodegenerative diseases, age-related decline, and traumatic injuries. However, studying this damage... Read moreTechnology
view channel
AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
Early diagnosis of ovarian cancer remains one of the toughest challenges in women’s health. Traditional tools such as the Risk of Ovarian Malignancy Algorithm (ROMA) can struggle to distinguish between... Read more
Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
Early diagnosis of psychiatric disorders such as depression, schizophrenia, and bipolar disorder remains one of medicine’s most pressing challenges. Current diagnostic methods rely heavily on clinical... Read more
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read moreIndustry
view channel
Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
Co-Diagnostics, Inc. (Salt Lake City, UT, USA) has formed a new artificial intelligence (AI) business unit to integrate the company's existing and planned AI applications into its Co-Dx Primer Ai platform.... Read more








