Blood Group O Found to Be Most Susceptible to Cholera
By LabMedica International staff writers Posted on 18 Sep 2012 |
The probability of becoming seriously ill from cholera depends on one’s blood group. Recent research showed that it is possible to find a new treatment for this troublesome illness by studying the molecular structure in the toxin in the cholera bacteria.
Three to five million people are infected by cholera yearly. The mortality rate is high: one hundred thousand people die from the infection every year. “Cholera depends on the blood group. Some blood groups have an increased risk of becoming seriously ill,” said Prof. Ute Krengel, from the department of chemistry at the University of Oslo (Norway).
When cholera bacteria multiply in the body, they create a poison called cholera toxin. The toxin must bind to the cell membrane before it can penetrate further into the intestinal cell and create mayhem. By studying the molecular structure of cholera toxins, researchers can discover how the toxins bind to intestinal cells at the level of the atom. Prof. Krengel’s goal was to find a new drug that prevents the cholera toxin from binding to the intestine and that ensures that the toxin is harmlessly dispersed from the body.
Cholera leads to violent diarrhea. The patient can lose up to 12 L of fluid every 24 hours. The treatment is a saline fluid replacement. “It must be administered as soon as possible and in large quantities. If the patient is unconscious already, the saline solution must be given intravenously. Antibiotics are of no use,” explained Prof. Gunnar Bjune, from the Institute of Health and Society at the University of Oslo.
The cholera bacterium is originally from Bangladesh, but in the past 200 hundred years, it has spread to much of the world and has established a firm foothold in many Asian and African countries. “Patients with blood group O are most at risk of becoming seriously ill. Those with blood groups A, B or AB are more protected against cholera,” said Prof. Krengel.
The Bangladeshi population is evenly distributed between blood groups O, A, and B. In Africa, most people have blood group O. Nearly everyone in the indigenous population in Latin America have group O. When cholera hits these areas, it hits especially hard. In collaboration with the Oslo University Hospital and the Biotechnology Centre, Prof. Krengel’s research group examined whether the probability of becoming seriously ill with cholera depends on blood groups. By studying the molecular structure in the toxin in the cholera bacterium, it is possible to find a new remedy for the dreaded illness, determine how strongly the cholera toxin binds, how long it takes to bind, and how long it stays bound to receptors on the intestinal cells.
The cholera toxin binds to small receptors on the intestinal wall. The receptors consist of small straws with attached sugar molecules. They are to protect the cells against harmful intruders. Unfortunately, the receptors can be exploited. “We want to develop new medicines that bind to the cholera toxin so that it cannot bind to the intestinal cells,” stated Prof. Krengel. The cholera toxin consists of two parts. The researchers study the lower part, which binds to the receptors. “We have discovered that the cholera toxin binds differently than previously thought,” she noted. The investigators will now examine how important the various amino acids are in the binding process and which amino acids bind the most. To penetrate into the intestinal cells, the cholera toxin must first get through mucous layer. “Our results suggest that the cholera toxin uses longer to penetrate the mucous layer if the patients have blood group antibodies in the mucous. Four out of five people have blood group antibodies in the mucous. Those with blood group O are the least protected and therefore get sicker than others.”
In its advanced research, the researcher have created a biologic model of how the cholera toxin enters intestinal cells. They do not use real cholera bacteria. Doing so would be too hazardous. Instead, they use Escherichia coli bacteria, which is the primary model bacterium for cell biologists. “They are easy to make and much quicker and safer to work with. We must grow large quantities in order to study the bindings,” said PhD candidate Julie Heggelund, whose background is in molecular biology.
To create synthetic cholera toxins-or to be precise: to create the lower part of the toxin--the scientists must manipulate the genes in E. coli bacteria. When Prof. Krengel had produced the lower part, she killed the bacteria in a pressure cooker. The receptors are synthetic sugar molecules. Microscopes are of no use in finding the structure of the cholera toxin and receptors: the resolution is not good enough. Researchers must rely on X-rays, which have such a short wavelength that most penetrate empty space in molecules. However, before they can get started with the X-ray machine, the researchers must crystallize the toxin and receptor molecules.
By interpreting the X-rays that are spread by the crystal, researchers can calculate what the structure of the atom looks like. This can be compared to sending laser light through a sieve. Studying the light that is spread by the mesh of the sieve allows researchers to calculate what the sieve looks like.
Each exposure is two-dimensional (2D). To create a three-dimensional image, researchers irradiate the toxin crystal up to 500 times from different angles. Although the imaging only takes a few days, the interpretation of the molecular structure can take several months.
Related Links:
University of Oslo
Three to five million people are infected by cholera yearly. The mortality rate is high: one hundred thousand people die from the infection every year. “Cholera depends on the blood group. Some blood groups have an increased risk of becoming seriously ill,” said Prof. Ute Krengel, from the department of chemistry at the University of Oslo (Norway).
When cholera bacteria multiply in the body, they create a poison called cholera toxin. The toxin must bind to the cell membrane before it can penetrate further into the intestinal cell and create mayhem. By studying the molecular structure of cholera toxins, researchers can discover how the toxins bind to intestinal cells at the level of the atom. Prof. Krengel’s goal was to find a new drug that prevents the cholera toxin from binding to the intestine and that ensures that the toxin is harmlessly dispersed from the body.
Cholera leads to violent diarrhea. The patient can lose up to 12 L of fluid every 24 hours. The treatment is a saline fluid replacement. “It must be administered as soon as possible and in large quantities. If the patient is unconscious already, the saline solution must be given intravenously. Antibiotics are of no use,” explained Prof. Gunnar Bjune, from the Institute of Health and Society at the University of Oslo.
The cholera bacterium is originally from Bangladesh, but in the past 200 hundred years, it has spread to much of the world and has established a firm foothold in many Asian and African countries. “Patients with blood group O are most at risk of becoming seriously ill. Those with blood groups A, B or AB are more protected against cholera,” said Prof. Krengel.
The Bangladeshi population is evenly distributed between blood groups O, A, and B. In Africa, most people have blood group O. Nearly everyone in the indigenous population in Latin America have group O. When cholera hits these areas, it hits especially hard. In collaboration with the Oslo University Hospital and the Biotechnology Centre, Prof. Krengel’s research group examined whether the probability of becoming seriously ill with cholera depends on blood groups. By studying the molecular structure in the toxin in the cholera bacterium, it is possible to find a new remedy for the dreaded illness, determine how strongly the cholera toxin binds, how long it takes to bind, and how long it stays bound to receptors on the intestinal cells.
The cholera toxin binds to small receptors on the intestinal wall. The receptors consist of small straws with attached sugar molecules. They are to protect the cells against harmful intruders. Unfortunately, the receptors can be exploited. “We want to develop new medicines that bind to the cholera toxin so that it cannot bind to the intestinal cells,” stated Prof. Krengel. The cholera toxin consists of two parts. The researchers study the lower part, which binds to the receptors. “We have discovered that the cholera toxin binds differently than previously thought,” she noted. The investigators will now examine how important the various amino acids are in the binding process and which amino acids bind the most. To penetrate into the intestinal cells, the cholera toxin must first get through mucous layer. “Our results suggest that the cholera toxin uses longer to penetrate the mucous layer if the patients have blood group antibodies in the mucous. Four out of five people have blood group antibodies in the mucous. Those with blood group O are the least protected and therefore get sicker than others.”
In its advanced research, the researcher have created a biologic model of how the cholera toxin enters intestinal cells. They do not use real cholera bacteria. Doing so would be too hazardous. Instead, they use Escherichia coli bacteria, which is the primary model bacterium for cell biologists. “They are easy to make and much quicker and safer to work with. We must grow large quantities in order to study the bindings,” said PhD candidate Julie Heggelund, whose background is in molecular biology.
To create synthetic cholera toxins-or to be precise: to create the lower part of the toxin--the scientists must manipulate the genes in E. coli bacteria. When Prof. Krengel had produced the lower part, she killed the bacteria in a pressure cooker. The receptors are synthetic sugar molecules. Microscopes are of no use in finding the structure of the cholera toxin and receptors: the resolution is not good enough. Researchers must rely on X-rays, which have such a short wavelength that most penetrate empty space in molecules. However, before they can get started with the X-ray machine, the researchers must crystallize the toxin and receptor molecules.
By interpreting the X-rays that are spread by the crystal, researchers can calculate what the structure of the atom looks like. This can be compared to sending laser light through a sieve. Studying the light that is spread by the mesh of the sieve allows researchers to calculate what the sieve looks like.
Each exposure is two-dimensional (2D). To create a three-dimensional image, researchers irradiate the toxin crystal up to 500 times from different angles. Although the imaging only takes a few days, the interpretation of the molecular structure can take several months.
Related Links:
University of Oslo
Latest Hematology News
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
- New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds
- Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
RNA Blood Test Detects Cancers and Resistance to Treatment
A newly developed blood test offers the ability to detect cancer, understand how cancer resists treatments, and assess tissue damage from non-cancerous conditions. This innovative test, created by researchers... Read more
IL-6 Outperforms Traditional Tests for Early Sepsis Detection
Sepsis, a severe and life-threatening condition caused by the immune system’s exaggerated response to infection, remains a major cause of death globally, responsible for approximately 11 million fatalities... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read more
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more