Noninvasive Device Detects Anemia
By LabMedica International staff writers Posted on 13 Aug 2012 |
A noninvasive device will help screen women with anemia in developing nations. The low-cost screening device connected to a cell phone could save thousands of women and children from anemia-related deaths and disabilities.
The device, HemoGlobe, is designed to convert the existing cell phones of health workers into a "prick-free" system for detecting and reporting anemia at the community level. The device's sensor, placed on a patient's fingertip, shines different wavelengths of light through the skin to measure the hemoglobin level in the blood. On a phone's screen, a community health worker quickly sees a color-coded test result, indicating cases of anemia, from mild to moderate and severe.
If anemia is detected, a patient would be encouraged to follow a course of treatment, ranging from taking iron supplements to visiting a clinic or hospital for treatment. After each test, the phone would send an automated text message with a summary of the results to a central server, which would produce a real-time map showing where anemia is prevalent. This information could facilitate follow-up care and help health officials to allocate resources where the need is most urgent.
Developed by Johns Hopkins biomedical engineering (Baltimore, MD, USA) undergraduates, HemoGlobe offers a noninvasive way to identify women with anemia in developing nations. Soumyadipta Acharya, assistant research professor in Johns Hopkins' Department of Biomedical Engineering and the project's faculty advisor and principal investigator, said the device could be important in reducing anemia-related deaths in developing countries. International health experts estimate that anemia contributes to 100,000 maternal deaths and 600,000 newborn deaths annually.
The HemoGlobe student inventors have estimated their cell phone-based systems could be produced for USD 10 to USD 20 each. At the recent Saving Lives at Birth: A Grand Challenge for Development competition, a USD 250,000 seed grant was awarded to the Johns Hopkins students' project.
"The first year we just focused on proving that the technology worked," said 21year old team member Noah Greenbaum, of Watchung (NJ, USA). "Now, we have a greater challenge: to prove that it can have a real impact by detecting anemia and making sure the mothers get the care they need."
"The team members realized that every community health worker already carries a powerful computer in their pocket–their cell phone," Prof. Acharya said. "So we didn't have to build a computer for our screening device, and we didn't have to build a display. Our low-cost device will use the existing cell phones of health workers to estimate and report hemoglobin levels."
Related Links:
Johns Hopkins biomedical engineering
The device, HemoGlobe, is designed to convert the existing cell phones of health workers into a "prick-free" system for detecting and reporting anemia at the community level. The device's sensor, placed on a patient's fingertip, shines different wavelengths of light through the skin to measure the hemoglobin level in the blood. On a phone's screen, a community health worker quickly sees a color-coded test result, indicating cases of anemia, from mild to moderate and severe.
If anemia is detected, a patient would be encouraged to follow a course of treatment, ranging from taking iron supplements to visiting a clinic or hospital for treatment. After each test, the phone would send an automated text message with a summary of the results to a central server, which would produce a real-time map showing where anemia is prevalent. This information could facilitate follow-up care and help health officials to allocate resources where the need is most urgent.
Developed by Johns Hopkins biomedical engineering (Baltimore, MD, USA) undergraduates, HemoGlobe offers a noninvasive way to identify women with anemia in developing nations. Soumyadipta Acharya, assistant research professor in Johns Hopkins' Department of Biomedical Engineering and the project's faculty advisor and principal investigator, said the device could be important in reducing anemia-related deaths in developing countries. International health experts estimate that anemia contributes to 100,000 maternal deaths and 600,000 newborn deaths annually.
The HemoGlobe student inventors have estimated their cell phone-based systems could be produced for USD 10 to USD 20 each. At the recent Saving Lives at Birth: A Grand Challenge for Development competition, a USD 250,000 seed grant was awarded to the Johns Hopkins students' project.
"The first year we just focused on proving that the technology worked," said 21year old team member Noah Greenbaum, of Watchung (NJ, USA). "Now, we have a greater challenge: to prove that it can have a real impact by detecting anemia and making sure the mothers get the care they need."
"The team members realized that every community health worker already carries a powerful computer in their pocket–their cell phone," Prof. Acharya said. "So we didn't have to build a computer for our screening device, and we didn't have to build a display. Our low-cost device will use the existing cell phones of health workers to estimate and report hemoglobin levels."
Related Links:
Johns Hopkins biomedical engineering
Latest Hematology News
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
- New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds
- Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
RNA Blood Test Detects Cancers and Resistance to Treatment
A newly developed blood test offers the ability to detect cancer, understand how cancer resists treatments, and assess tissue damage from non-cancerous conditions. This innovative test, created by researchers... Read more
IL-6 Outperforms Traditional Tests for Early Sepsis Detection
Sepsis, a severe and life-threatening condition caused by the immune system’s exaggerated response to infection, remains a major cause of death globally, responsible for approximately 11 million fatalities... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read more
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more