Microfluidic Devices Created from Ordinary, Inexpensive Components
|
By LabMedica International staff writers Posted on 16 Feb 2012 |

Image: NIST scientists combined a glass slide, plastic sheets, and double-sided tape to create an inexpensive and simple-to-build microfluidic device for exposing an array of cells to different concentrations of a chemical (Photo courtesy of Cooksey/NIST).
A glass slide, plastic sheets, and double-sided tape were combined to create a diffusion-based gradient generator, a tool that rapidly assesses how changing concentrations of specific chemicals affect living cells.
Exposing an array of cultured cells to a chemical gradient provides a solution where the chemical concentration changes gradually and predictably across the array. Such gradients are a rapid, high-throughput way to evaluate the effect on cell growth or toxicity.
Created by National Institute of Standards and Technology (NIST; Gaithersburg, MD, USA) engineer Javier Atencia the gradient generator is built in layers, with each section precisely positioned with an alignment tab. The base is a glass slide, upon which is attached a strip of double-sided tape cut to have a row of four micrometer-sized channels. On top of this is placed a polystyrene strip cut to have two lines each of four tiny circular "wells" where each pair lines up with the ends of the channel below it. The next layer is another strip of double-sided tape, this time with a Y-shaped canal cut into it to serve as the flow path for the chemical gradient. Finally, a Mylar strip cut to have an identical Y-canal serves as the cover.
The hinged cover allows access to the wells for adding test cells. Once done, the cover is lowered and affixed, sealing the gradient generator. Fluid flow in and out of the system is accomplished using magnetic connectors. Under constant pressure, the flow assures a steady-state stream through the device and creates a diffusion gradient in each buried channel. Cells in the channels are simultaneously exposed to a range of chemical concentrations from high to low.
Conventional microfluidic systems usually mix fluids by pumping them in a circular motion or by twisting and folding them together. The new NIST system's gradient is created by diffusion––the gentle movement of matter from one point to another by random molecular motion. This greatly reduces the risk of cells being swept away or damaged by shearing forces in the test fluid.
The device was tested by loading it with cells genetically engineered to produce large amounts of green fluorescent protein (GFP) and then introduced cycloheximide (CHX), a chemical that shuts down ribosomes, the cell's protein factories. Cells exposed to the toxin quickly stop synthesizing GFP, decreasing fluorescence by an amount directly related to the concentration of CHX.
This is what the scientists observed in the gradient generator assays. The cells were exposed three times to CHX, and each time, the level of GFP fluorescence increased as the concentration of CHX in the gradient decreased, and vice versa.
The new device was described in the 2012 edition of the journal Lab-on-a-Chip.
Related Links:
National Institute of Standards and Technology
Exposing an array of cultured cells to a chemical gradient provides a solution where the chemical concentration changes gradually and predictably across the array. Such gradients are a rapid, high-throughput way to evaluate the effect on cell growth or toxicity.
Created by National Institute of Standards and Technology (NIST; Gaithersburg, MD, USA) engineer Javier Atencia the gradient generator is built in layers, with each section precisely positioned with an alignment tab. The base is a glass slide, upon which is attached a strip of double-sided tape cut to have a row of four micrometer-sized channels. On top of this is placed a polystyrene strip cut to have two lines each of four tiny circular "wells" where each pair lines up with the ends of the channel below it. The next layer is another strip of double-sided tape, this time with a Y-shaped canal cut into it to serve as the flow path for the chemical gradient. Finally, a Mylar strip cut to have an identical Y-canal serves as the cover.
The hinged cover allows access to the wells for adding test cells. Once done, the cover is lowered and affixed, sealing the gradient generator. Fluid flow in and out of the system is accomplished using magnetic connectors. Under constant pressure, the flow assures a steady-state stream through the device and creates a diffusion gradient in each buried channel. Cells in the channels are simultaneously exposed to a range of chemical concentrations from high to low.
Conventional microfluidic systems usually mix fluids by pumping them in a circular motion or by twisting and folding them together. The new NIST system's gradient is created by diffusion––the gentle movement of matter from one point to another by random molecular motion. This greatly reduces the risk of cells being swept away or damaged by shearing forces in the test fluid.
The device was tested by loading it with cells genetically engineered to produce large amounts of green fluorescent protein (GFP) and then introduced cycloheximide (CHX), a chemical that shuts down ribosomes, the cell's protein factories. Cells exposed to the toxin quickly stop synthesizing GFP, decreasing fluorescence by an amount directly related to the concentration of CHX.
This is what the scientists observed in the gradient generator assays. The cells were exposed three times to CHX, and each time, the level of GFP fluorescence increased as the concentration of CHX in the gradient decreased, and vice versa.
The new device was described in the 2012 edition of the journal Lab-on-a-Chip.
Related Links:
National Institute of Standards and Technology
Latest Technology News
- Robotic Technology Unveiled for Automated Diagnostic Blood Draws
- ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
Channels
Clinical Chemistry
view channel
Rapid Blood Testing Method Aids Safer Decision-Making in Drug-Related Emergencies
Acute recreational drug toxicity is a frequent reason for emergency department visits, yet clinicians rarely have access to confirmatory toxicology results in real time. Instead, treatment decisions are... Read more
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read moreMolecular Diagnostics
view channel
Genetic Test Could Improve Early Detection of Prostate Cancer
Prostate cancer is the second-leading cause of cancer deaths among men in the United States and remains a major health burden. Current screening with prostate-specific antigen (PSA) blood tests can sometimes... Read more
Bone Molecular Maps to Transform Early Osteoarthritis Detection
Osteoarthritis affects more than 500 million people worldwide and is a major cause of pain, disability, and reduced quality of life. By the time it is diagnosed through symptoms and visible cartilage loss,... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
CRISPR-Based Technology Neutralizes Antibiotic-Resistant Bacteria
Antibiotic resistance has accelerated into a global health crisis, with projections estimating more than 10 million deaths per year by 2050 as drug-resistant “superbugs” continue to spread.... Read more
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read morePathology
view channel
AI-Powered Microscope Diagnoses Malaria in Blood Smears Within Minutes
Malaria remains one of the world’s deadliest infectious diseases, killing hundreds of thousands each year, mostly in under-resourced regions where laboratory infrastructure is limited. Diagnosis still... Read more
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read moreIndustry
view channel
WHX Labs in Dubai spotlights leadership skills shaping next-generation laboratories
WHX Labs in Dubai (formerly Medlab Middle East), held at Dubai World Trade Centre (DWTC) from 10–13 February, brings together international experts to discuss the factors redefining laboratory leadership,... Read moreNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more







