Reasons for Rejecting Blood Samples Analyzed
By LabMedica International staff writers Posted on 24 Jan 2012 |
A determination has been made of what types of preanalytical errors that leads to rejection of blood samples in the clinical laboratory.
Errors in clinical laboratories have a great impact on safety and care of patients, and need to be carefully analyzed for improvements to be made in the preanalytical phase, which is responsible for about 70% of errors.
Laboratory scientists at the University Hospital (Porto Alegre, Brazil) carried out an analysis of rejected samples and consequent request for new daily collections of blood for conduction of tests in the following analytical departments: biochemical-immunoassay and hematology. The analysis was performed on data collected from June to August 2010.
The rejection criteria in clotted, hemolyzed, icteric and lipemic samples were visually applied by two technologists and the criterion for the clotted sample was only analyzed in samples collected in ethylenediamine tetra-acetic acid (EDTA) or sodium citrate tubes. The rejection criterion for icteric samples was applied in samples with seric bilirubin levels greater than 25 mg/L that could interfere with the measurement of some tests, such as those for albumin, cholesterol, and total protein. Lipemic samples, in turn, were rejected when serum triglycerides levels exceeded 400 mg/dL, as that may inhibit the tests for amylase, uric acid, urea, bilirubin and total protein.
Of the 77,051 blood samples that were collected during the three months period, 441 (0.57%) were rejected by some type of preanalytical error and therefore had to be recollected. A clot was found in 43.8% of disallowed samples and was found to be the major cause of rejection of samples, followed by 24% with insufficient sample volume. The third most frequent cause for rejecting samples were hemolyzed samples, which involved 17.9% of cases. Other reasons for rejection of samples were misidentification, inappropriate tube, lipemic samples, inadequate sample/additive ratio, and insignificant icteric samples.
The authors concluded that in their laboratory, despite the percentage of preanalytical errors being small, the appearance of laboratory errors could be provoke an adverse impact on patient care. For example, when blood constituents such as potassium, magnesium, iron, lactate dehydrogenase, phosphorus, ammonium, and total protein are falsely increased during hemolysis. In this context, the poor quality specimens could influence laboratory results, which would be clinically incorrect and therefore mislead the physician whose intervention might be unsuccessful. The study was published in January 2012 in the journal Clinical Biochemistry.
Related Links:
University Hospital Porto Alegre
Errors in clinical laboratories have a great impact on safety and care of patients, and need to be carefully analyzed for improvements to be made in the preanalytical phase, which is responsible for about 70% of errors.
Laboratory scientists at the University Hospital (Porto Alegre, Brazil) carried out an analysis of rejected samples and consequent request for new daily collections of blood for conduction of tests in the following analytical departments: biochemical-immunoassay and hematology. The analysis was performed on data collected from June to August 2010.
The rejection criteria in clotted, hemolyzed, icteric and lipemic samples were visually applied by two technologists and the criterion for the clotted sample was only analyzed in samples collected in ethylenediamine tetra-acetic acid (EDTA) or sodium citrate tubes. The rejection criterion for icteric samples was applied in samples with seric bilirubin levels greater than 25 mg/L that could interfere with the measurement of some tests, such as those for albumin, cholesterol, and total protein. Lipemic samples, in turn, were rejected when serum triglycerides levels exceeded 400 mg/dL, as that may inhibit the tests for amylase, uric acid, urea, bilirubin and total protein.
Of the 77,051 blood samples that were collected during the three months period, 441 (0.57%) were rejected by some type of preanalytical error and therefore had to be recollected. A clot was found in 43.8% of disallowed samples and was found to be the major cause of rejection of samples, followed by 24% with insufficient sample volume. The third most frequent cause for rejecting samples were hemolyzed samples, which involved 17.9% of cases. Other reasons for rejection of samples were misidentification, inappropriate tube, lipemic samples, inadequate sample/additive ratio, and insignificant icteric samples.
The authors concluded that in their laboratory, despite the percentage of preanalytical errors being small, the appearance of laboratory errors could be provoke an adverse impact on patient care. For example, when blood constituents such as potassium, magnesium, iron, lactate dehydrogenase, phosphorus, ammonium, and total protein are falsely increased during hemolysis. In this context, the poor quality specimens could influence laboratory results, which would be clinically incorrect and therefore mislead the physician whose intervention might be unsuccessful. The study was published in January 2012 in the journal Clinical Biochemistry.
Related Links:
University Hospital Porto Alegre
Latest Clinical Chem. News
- Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
- ‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
- Low-Cost Portable Screening Test to Transform Kidney Disease Detection
- New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
- Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
- Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
- AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
- Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
- Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
- New Saliva Test Rapidly Identifies Paracetamol Overdose
- POC Saliva Testing Device Predicts Heart Failure in 15 Minutes
- Screening Tool Detects Multiple Health Conditions from Single Blood Drop
- Integrated Chemistry and Immunoassay Analyzer with Extensive Assay Menu Offers Flexibility, Scalability and Data Commutability
- Rapid Drug Test to Improve Treatment for Patients Presenting to Hospital
- AI Model Detects Cancer at Lightning Speed through Sugar Analyses
- First-Ever Blood-Powered Chip Offers Real-Time Health Monitoring
Channels
Molecular Diagnostics
view channel
Genetic-Based Tool Predicts Survival Outcomes of Pancreatic Cancer Patients
A tumor marker is a substance found in the body that may signal the presence of cancer. These substances, which can include proteins, genes, molecules, or other biological compounds, are either produced... Read more
Urine Test Diagnoses Early-Stage Prostate Cancer
Prostate cancer is one of the leading causes of death among men worldwide. A major challenge in diagnosing the disease is the absence of reliable biomarkers that can detect early-stage tumors.... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read more
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
AI-Based Model Predicts Kidney Cancer Therapy Response
Each year, nearly 435,000 individuals are diagnosed with clear cell renal cell carcinoma (ccRCC), making it the most prevalent subtype of kidney cancer. When the disease spreads, anti-angiogenic therapies... Read more
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read moreTechnology
view channel
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more