Immunobiomarker Blood Test Developed for Early Detection of Cancer
By LabMedica International staff writers Posted on 24 Jun 2010 |
A groundbreaking blood test has been developed that should help in the detection of cancer as much as five years earlier than current testing methods such as mammography and computed tomography (CT) scans. Physicians will know the result of their patient's test within one week of sending in a blood sample to the biotech company that devised the test.
Oncimmune, Ltd. (Nottingham, UK), a University of Nottingham spin-out company, has developed a new technique, which replicates the cancer proteins that trigger the body's response to the disease and robotic technology to measure this response. This new technique, which involves immunobiomarker technology, provides a significant advance in how early a cancer may be detected and is likely to change the current paradigm of diagnosis and treatment for most solid cancers such as lung, breast, ovarian, colon, and prostate.
Based on the early work of John Robertson, a world-renowned breast cancer specialist and professor of surgery in The University of Nottingham's faculty of medicine and health sciences, Oncimmune has successfully transferred this science into a reproducible commercial test. The test for lung cancer, EarlyCDT-Lung will be launched nationally in the United States in May 2010, followed by a launch in the United Kingdom early next year.
Geoffrey Hamilton-Fairley, executive chairman of Oncimmune, said, "We believe this test, along with the others we will launch in the next few years, will lead to a better prognosis for a significant number of cancer sufferers.”
Early research results were derived using blood samples from patients with breast cancer and a group of high-risk women attending for annual mammography, which Prof. Robertson had prospectively collected in Nottingham. All samples were obtained with fully informed consent as part of a study, which had received approval from the appropriate ethics committee. In addition to identifying the signal in the blood of a percentage of women when they developed breast cancer, the results also showed that the signal could be detected in some of the high-risk patients who had given blood samples for a number of years during their yearly check up and before they were subsequently diagnosed with cancer.
When these samples were run retrospectively by Prof. Robertson, he demonstrated that the prototype assay test could have detected over half of these cancers up to four years before they were actually diagnosed. The research on lung cancer followed through a European Union grant, which involved both The University of Nottingham and Oncimmune in collaboration with a number of European partners.
A study involving researchers at the Mayo Clinic (Rochester, MN, USA) recorded similar results using blood samples from a study of CT scans to screen for lung cancer where antibodies were detected up to five years before the lung cancers were diagnosed. A number of other academic centers have reported similar results.
Oncimmune commercializes the technology developed in the laboratories of Prof. Robertson. In 2006, the company set up a North American operation to validate and scale-up the test, trialing it on more than eight million assay wells from 80,000 patient samples. The first early cancer detection test (EarlyCDT) to launch will be the test for lung cancer (EarlyCDT-Lung), which has the potential to detect the early stages of lung cancer possibly up to five years before a tumor appears. The targets for this test are high-risk individuals such as long-term smokers and ex-smokers between the ages of 40 and 75. Moreover, the test would be appropriate for people who have been exposed to other risk factors associated with the disease, for instance, environmental exposures such as radon, asbestos, and extensive exposure to secondary smoke.
Using the technology developed by Oncimmune there is, for the first time, an effective platform available for testing the autoimmune response to cancer and further research will allow validation of the test in other tumor areas such as lung, colon, and ovarian cancer.
To support this, the University will establish a Center of Excellence for Autoimmunity in Cancer (CEAC) with Prof. Robertson as the director of research. The new center will foster collaborative research to speed up the delivery of an autoantibody blood test for different types of cancer for clinical use; encourage other research in the area of autoimmunity in cancer; and continue the search for support technologies that have the potential to enhance the medical prognosis following a positive test result.
Prof. David Greenaway, vice-chancellor of the University of Nottingham, said, "The establishment of CEAC will provide state-of-the-art technologies to continue world leading research and development in the early detection of cancer using autoantibodies. The new center will house a multidisciplinary research team working in partnership with international collaborators and Oncimmune. The research will provide additional test systems for the early diagnosis of a wide range of cancers, which will have considerable impact within clinical medicine. The group's discovery science, which has led to a novel set of biomarkers, is providing new insights into the biology of cancer. Their basic translational and clinical research is likely to contribute to a positive paradigm shift in our understanding of the early phases of cancer cell development as well as enhancement of the medical management of a wide range of cancer types.”
Initially the test will be offered via primary care physicians and pulmonologists in the United States for high-risk asymptomatic patients as well as patients who have indeterminate lung nodules.
Related Links:
Oncimmune
Oncimmune, Ltd. (Nottingham, UK), a University of Nottingham spin-out company, has developed a new technique, which replicates the cancer proteins that trigger the body's response to the disease and robotic technology to measure this response. This new technique, which involves immunobiomarker technology, provides a significant advance in how early a cancer may be detected and is likely to change the current paradigm of diagnosis and treatment for most solid cancers such as lung, breast, ovarian, colon, and prostate.
Based on the early work of John Robertson, a world-renowned breast cancer specialist and professor of surgery in The University of Nottingham's faculty of medicine and health sciences, Oncimmune has successfully transferred this science into a reproducible commercial test. The test for lung cancer, EarlyCDT-Lung will be launched nationally in the United States in May 2010, followed by a launch in the United Kingdom early next year.
Geoffrey Hamilton-Fairley, executive chairman of Oncimmune, said, "We believe this test, along with the others we will launch in the next few years, will lead to a better prognosis for a significant number of cancer sufferers.”
Early research results were derived using blood samples from patients with breast cancer and a group of high-risk women attending for annual mammography, which Prof. Robertson had prospectively collected in Nottingham. All samples were obtained with fully informed consent as part of a study, which had received approval from the appropriate ethics committee. In addition to identifying the signal in the blood of a percentage of women when they developed breast cancer, the results also showed that the signal could be detected in some of the high-risk patients who had given blood samples for a number of years during their yearly check up and before they were subsequently diagnosed with cancer.
When these samples were run retrospectively by Prof. Robertson, he demonstrated that the prototype assay test could have detected over half of these cancers up to four years before they were actually diagnosed. The research on lung cancer followed through a European Union grant, which involved both The University of Nottingham and Oncimmune in collaboration with a number of European partners.
A study involving researchers at the Mayo Clinic (Rochester, MN, USA) recorded similar results using blood samples from a study of CT scans to screen for lung cancer where antibodies were detected up to five years before the lung cancers were diagnosed. A number of other academic centers have reported similar results.
Oncimmune commercializes the technology developed in the laboratories of Prof. Robertson. In 2006, the company set up a North American operation to validate and scale-up the test, trialing it on more than eight million assay wells from 80,000 patient samples. The first early cancer detection test (EarlyCDT) to launch will be the test for lung cancer (EarlyCDT-Lung), which has the potential to detect the early stages of lung cancer possibly up to five years before a tumor appears. The targets for this test are high-risk individuals such as long-term smokers and ex-smokers between the ages of 40 and 75. Moreover, the test would be appropriate for people who have been exposed to other risk factors associated with the disease, for instance, environmental exposures such as radon, asbestos, and extensive exposure to secondary smoke.
Using the technology developed by Oncimmune there is, for the first time, an effective platform available for testing the autoimmune response to cancer and further research will allow validation of the test in other tumor areas such as lung, colon, and ovarian cancer.
To support this, the University will establish a Center of Excellence for Autoimmunity in Cancer (CEAC) with Prof. Robertson as the director of research. The new center will foster collaborative research to speed up the delivery of an autoantibody blood test for different types of cancer for clinical use; encourage other research in the area of autoimmunity in cancer; and continue the search for support technologies that have the potential to enhance the medical prognosis following a positive test result.
Prof. David Greenaway, vice-chancellor of the University of Nottingham, said, "The establishment of CEAC will provide state-of-the-art technologies to continue world leading research and development in the early detection of cancer using autoantibodies. The new center will house a multidisciplinary research team working in partnership with international collaborators and Oncimmune. The research will provide additional test systems for the early diagnosis of a wide range of cancers, which will have considerable impact within clinical medicine. The group's discovery science, which has led to a novel set of biomarkers, is providing new insights into the biology of cancer. Their basic translational and clinical research is likely to contribute to a positive paradigm shift in our understanding of the early phases of cancer cell development as well as enhancement of the medical management of a wide range of cancer types.”
Initially the test will be offered via primary care physicians and pulmonologists in the United States for high-risk asymptomatic patients as well as patients who have indeterminate lung nodules.
Related Links:
Oncimmune
Latest Hematology News
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
- New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds
- Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Cheap Cell-Free DNA Based Test Accurately Predicts Preterm Birth
Preterm birth (PTB) occurs in around 11% of all births globally, leading to considerable morbidity and mortality for both mothers and their newborns. Identifying pregnancies at risk of PTB early in gestation... Read more
RNA Blood Test Detects Cancers and Resistance to Treatment
A newly developed blood test offers the ability to detect cancer, understand how cancer resists treatments, and assess tissue damage from non-cancerous conditions. This innovative test, created by researchers... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Breakthrough Diagnostic Approach to Significantly Improve TB Detection
Tuberculosis (TB) remains the deadliest infectious disease globally, with 10.8 million new cases and 1.25 million deaths reported in 2023. Early detection through effective screening is crucial in identifying... Read more
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more