LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

DNA Biosensor Enables Early Diagnosis of Cervical Cancer

By LabMedica International staff writers
Posted on 21 Dec 2023
Print article
Image: The electrochemical sensor detects HPV-16 and HPV-18 with high specificity (Photo courtesy of 123RF)
Image: The electrochemical sensor detects HPV-16 and HPV-18 with high specificity (Photo courtesy of 123RF)

Molybdenum disulfide (MoS2), recognized for its potential to form two-dimensional nanosheets like graphene, is a material that's increasingly catching the eye of the scientific community. These nanosheets are formed through the stacking of S–Mo–S layers that are held together by Van der Waals forces. MoS2's distinctive structural, optical, thermal, and electrochemical attributes have paved the way for research in diverse domains, including biomolecule sensing, optoelectronics, energy storage, and more. Historically, carbon nanostructures have been used as an immobilization platform for DNA. To replace carbon with MoS2 as an effective electrochemical DNA sensor, the electrical conductivity of MoS2 must be improved significantly.

To tackle this challenge, researchers at Chung-Ang University (Seoul, South Korea) have devised an electrochemical DNA biosensor using a composite of graphitic nano-onions and MoS2 nanosheets. This biosensor shows promise in detecting human papillomavirus (HPV) types 16 and 18, offering the potential for early cervical cancer diagnosis. The team measured the biosensor's sensitivity to these HPV types using the differential pulse voltammetry (DPV) technique in conjunction with methylene blue (MB) as a redox indicator. They observed that the nano-onion/MoS2 nanosheet composite electrode demonstrated higher current peaks than its MoS2-only counterpart, suggesting enhanced conductive electron transfer facilitated by the nano-onions.

This enhancement led to the effective and specific detection of target DNAs from HPV-16 and HPV-18 Siha and Hela cancer cell lines. As a result, MoS2 nanosheets with improved electrical conductivity, when combined with nano-onions, have shown potential as a robust platform for creating electrochemical biosensors that can efficiently diagnose various health conditions, including cervical cancer. Moreover, the integration of nano-onions or nanodiamonds with various organic biomaterials could lead to advancements in chemical functionality, electron transfer conductivity, light absorption, and more. These developments hold promise for groundbreaking applications in disease sensing, targeted drug delivery, and biomedical imaging and diagnostics.

Related Links:
Chung-Ang University 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more