LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

DNA Copy Number Alterations Impact Melanoma Metastasis

By LabMedica International staff writers
Posted on 19 Jul 2022
Print article
Image: Photo micrograph of Histopathology of Malignant Melanoma (Photo courtesy of DiseaeseShows)
Image: Photo micrograph of Histopathology of Malignant Melanoma (Photo courtesy of DiseaeseShows)

Changes in DNA can lead to the development and progression of cancer. DNA serves as a template for an intermediary molecule called RNA that, in turn, codes for proteins that control all cellular processes.

MicroRNA (miRNA) molecules are small segments of nonprotein coding RNA that can silence other protein-coding RNA molecules and regulate the production of proteins. When the activity of miRNA molecules is perturbed, diseases such as cancer can develop.

Molecular Oncologists at the H. Lee Moffitt Cancer Center (Tampa, FL, USA) investigated the contribution of competitive endogenous RNAs to the oncogenic effects of somatic copy number alterations (CNAs). RNAs affecting the function of miRNAs are called competitive endogenous RNA (ceRNA) and are thought to play an important role in cancer development independent of their protein-coding activity.

The team analyzed chromosome alterations and discovered that gains in chromosome segment 1q were very common among a panel of metastatic melanoma cases. A more in-depth analysis revealed that three key genes called CEP170, NUCKS1 and ZC3H11A present on chromosome 1q are amplified in metastatic melanoma cases and associated with disease progression. Mechanistically, they discovered that the RNA sequences of the three genes act as ceRNAs that sponge miRNA molecules that function to inhibit tumor growth and development. Therefore, by "soaking up" the miRNA molecules and their blocking antitumor activity, the ceRNA molecules drive tumor growth and metastasis. Importantly, they discovered that copy number alterations of CEP170, NUCKS1 and ZC3H11A were present in other tumor types, including breast, colon, liver and lung cancer, suggesting that these alterations may be important for other cancer types as well.

These ceRNAs enhanced melanoma metastasis by sequestering tumor suppressor miRNAs. Orthogonal genetic assays with miRNA inhibitors and target site blockers, along with rescue studies, demonstrated that miRNA sequestration is critical for the oncogenic effects of CEP170, NUCKS1, and ZC3H11A mRNAs. Furthermore, chromosome 1q ceRNA-mediated miRNA sequestration alleviated the repression of several pro-metastatic target genes.

Florian A. Karreth, PhD, a molecular oncologist and senior author of the study, said, “Our study challenges the notion that somatic copy number alterations promote cancer predominantly through their encoded proteins and establishes ceRNAs as potent drivers underlying the oncogenicity of somatic copy number alterations.”

The authors concluded that this regulatory RNA network was evident in other cancer types, suggesting chromosome 1q ceRNA deregulation as a common driver of cancer progression. Taken together, this work demonstrates that ceRNAs mediate the oncogenicity of somatic CNAs. The study was published on July 14, 2022 in the journal Cancer Research.

Related Links:
H. Lee Moffitt Cancer Center 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more