We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Sensitive Method Detects Free Monoclonal Light Chains in Serum

By LabMedica International staff writers
Posted on 26 Oct 2021
Print article
Image: The Optilite Clinical Chemistry Protein Analyzer (Photo courtesy of The Binding Site)
Image: The Optilite Clinical Chemistry Protein Analyzer (Photo courtesy of The Binding Site)
Neoplastic monoclonal gammopathies (NMG) consist of monoclonal gammopathy of undetermined significance (MGUS), asymptomatic or smoldering multiple myeloma (SMM) and multiple/plasma cell myeloma (MM).

Multiple myeloma is a malignant tumor of plasma cells and is generally associated with synthesis and secretion of monoclonal immunoglobulins by tumor cells. MM is the commonest hematologic malignancy in adults. Higher levels of serum free monoclonal light chains (SFLC) have been observed to result in shorter survival, perhaps through induction of renal damage.

Clinical Pathologists at the Medical College of Georgia at Augusta University (Atlanta, GA, USA) investigated a sensitive method for detecting free monoclonal light chains in serum that could provide a marker for residual/minimal residual disease and as an adjunct to serum protein electrophoresis to serve as a screening method for monoclonal gammopathies.

Quantification of SFLC was conducted by using kits procured from The Binding Site and assayed with an Optilite analyzer (Birmingham, UK). Rabbit polyclonal antisera to kappa and lambda free light chains were procured from SEBIA Inc. (Norcross, GA, USA). Residual clinical serum samples were assessed for monoclonal SFLC by a modified serum immunofixation protein electrophoresis (SIFE) procedure (the Modified SIFE was designated FLC-Modified SIFE). Results from this modified immunofixation electrophoresis were compared with results from commercially available MASS-FIX/MALDI assay (Mayo Clinic Laboratories, Rochester, MN, USA).

The scientists reported that monoclonal free kappa light chains could be detected to a concentration of about 1.78 mg/L and monoclonal free lambda light chains to a concentration of about 1.15 mg/L without the need for special equipment. Comparison of these thresholds with parallel results from a commercially available MASS-FIX/MALDI assay revealed the modified electrophoretic method to be more sensitive in the context of free monoclonal light chains. FLC-Modified SIFE revealed monoclonal light chains in agreement with the expected findings, given a patient's diagnosis and immunoglobulin type determined by conventional SPEP and SIFE.

The authors concluded that modified serum immunofixation electrophoresis has been shown to detect low levels of monoclonal free light chains at a sensitivity suitable for the method to be used in detecting minimal residual disease, and potentially in a screening assay for monoclonal gammopathies. The disparity in the results with commercially available MASS-FIX/MALDI assay is postulated to be due to limited repertoire of reactivity of nanobodies of camelid origin. The study was published on October 12, 2021 in the journal Practical Laboratory Medicine.

Related Links:
Medical College of Georgia at Augusta University
The Binding Site
SEBIA Inc
Mayo Clinic Laboratories


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more