We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Paraproteins Identification Methods Compared for Monoclonal Gammopathies

By LabMedica International staff writers
Posted on 18 Mar 2021
Print article
Image: The HYDRASYS 2 Electrophoresis Automated System (Photo courtesy of Sebia).
Image: The HYDRASYS 2 Electrophoresis Automated System (Photo courtesy of Sebia).
Monoclonal gammopathy, also known as paraproteinemia, is the presence of excessive amounts of myeloma protein or monoclonal gamma globulin in the blood. It is usually due to an underlying immunoproliferative disorder or hematologic neoplasms, especially multiple myeloma.

In monoclonal gammopathies, the full laboratory workup for initial diagnosis and disease relapse includes a complete blood count and differential, a peripheral blood smear, a chemistry screen including calcium and creatinine, serum protein electrophoresis, serum immunofixation (IFE), immunoturbidimetric or immunonephelometric quantification of serum Ig, routine urinalysis, 24-hour urine collection for electrophoresis and immunofixation, serum β2-microglobulin, lactate dehydrogenase, and measurement of serum free light chains.

Medical Laboratory Scientists at the MDI Limbach Berlin GmbH (Berlin, Germany) evaluated methodic differences between serum immunofixation and serum immunosubtraction as well as in the quantitation of serum immunoglobulins on different clinical chemical platforms. The scientists used 322 unique routine patient samples and used for comparison between serum immunofixation (IFE) on HYDRASIS 2 (Sebia, Lisses, France) and serum immunosubtraction (ISE) on Sebia's CAPILLARYS 2 as well as between quantitation results of immunoglobulin A, G, and M on the ARCHITECT c16000PLUS (Abbott Core Laboratory, Abbott Park, IL, USA) and the Cobas c 502 module (Roche Diagnostics, Rotkreuz, Switzerland). The median age of patients was 75 years.

The scientists reported that IFE detected and identified a total of 69 paraproteinemias, while ISE only detected monoclonal proteins in 51 samples, a difference of 26%. ISE failed to detect 6/7 samples with biclonal paraproteinemias as well as 8/11 monoclonal paraproteins involving IgA and 4/10 monoclonal paraproteins involving IgM identified by IFE. For monoclonal paraproteins involving IgG, the total number of detections was 39 in IFE and 38 in ISE. Samples with paraproteinemia were nearly evenly split between sexes. Paraprotein identification differed remarkably between immunofixation and immunosubtraction. Quantitation of serum immunoglobulins showed higher values on Abbott's ARCHITECT c16000PLUS when compared with Roche's Cobas c 502 module.

The authors concluded that identification of paraproteins via serum immunosubtraction is inferior to serum immunofixation, which can have implications on the diagnosis and monitoring of patients with monoclonal gammopathy. If immunoturbidimetric quantitation of immunoglobulins is used for follow-up, the same clinical-chemical platform should be used consistently. The study was published on February 26, 2021 in the journal Archives of Pathology and Laboratory Medicine.

Related Links:
MDI Limbach Berlin GmbH
Sebia
Abbott Core Laboratory
Roche Diagnostics


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more