We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Immunogenomic Landscape of Hematological Malignancies Mapped

By LabMedica International staff writers
Posted on 20 Jul 2020
Print article
Image: The Immunogenomic Landscape of Hematological Malignancies (Photo courtesy of Helsinki University Hospital).
Image: The Immunogenomic Landscape of Hematological Malignancies (Photo courtesy of Helsinki University Hospital).
The reaction of the body's immune system against cancer can be thought of as a cycle. Cancer cells contain proteins that differ from proteins in other tissue. Their components, known as antigens, have to be presented to the T cells of the immune system by the cancer cells.

When they identify antigens, T cells become active and start to destroy cancer cells, which make the latter release more antigens, enhancing the immune response further. In addition to T cells, natural killer (NK) cells have the ability to destroy cells. In immunotherapies, the immune system is therapeutically activated by boosting different stages of the cycle.

A large team of medical scientists collaborating with the Helsinki University Hospital (Helsinki, Finland) integrated over 8,000 transcriptomes and 2,000 samples with multilevel genomics of hematological cancers to investigate how immunological features are linked to cancer subtypes, genetic and epigenetic alterations, and patient survival, and validated key findings. They mapped the immune landscape of hematological malignancies in a dataset covering more than 10,000 patients to identify drug targets and patient groups which could potentially benefit from immunotherapies.

The team reported that infiltration of cytotoxic lymphocytes was associated with TP53 and myelodysplasia-related changes in acute myeloid leukemia, and activated B cell-like phenotype and interferon-γ response in lymphoma. CIITA methylation regulating antigen presentation, cancer type-specific immune checkpoints, such as V-domain Ig suppressor of T cell activation (VISTA) in myeloid malignancies, and variation in cancer antigen expression further contributed to immune heterogeneity and predicted survival.

The investigators found that in certain subtypes of acute myeloid leukemia, DNA methylation had epigenetically silenced antigen presentation. A drug that inhibits DNA methylation restored the expression of antigen-presenting proteins in laboratory tests. As the drug is already used to treat acute myeloid leukaemia, it could potentially increase the efficiency of immunotherapies through combined use.

Satu Mustjoki, MD, PhD, a Professor of Translational Hematology and senior author of the study, said, “The extensive survey of the immunogenomic features of hematological malignancies carried out in the study helps scientists and doctors target immunotherapies at the patient groups that gain the most benefit as well as understand the factors that have a potential impact on the efficacy of therapies.”

The authors concluded that their study provided a resource linking immunology with cancer subtypes and genomics in hematological malignancies. The study was published on July 9, 2020 in the journal Cancer Cell.

Related Links:
Helsinki University Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more