LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Patterns of Circulating MicroRNAs Characterize Lack of Sleep in Children and Adolescents

By LabMedica International staff writers
Posted on 20 Jan 2020
Print article
Image: Sleeping children: “Zwei schlafende Mädchen auf der Ofenbank” (1895) by Albert Anker (Photo courtesy of Wikimedia Commons)
Image: Sleeping children: “Zwei schlafende Mädchen auf der Ofenbank” (1895) by Albert Anker (Photo courtesy of Wikimedia Commons)
A major pan-European study established a link between circulating microRNAs and sleep duration in children and adolescents.

It is commonly recognized that sleep is essential for children's health, and that insufficient sleep duration is associated with negative health consequences, such as heart disease and diabetes. In humans, sleep duration and quality are influenced by genetic, environmental, and social factors. Likewise, epigenetic mechanisms regulate circadian rhythms and sleep patterns.

Investigators participating in the I.Family Study, which includes 17 member institutes in 12 countries, sought to determine if differential patterns of circulating miRNAs were associated with sleep duration in normal‐weight European children and adolescents. The I.Family Study, which is administered from the University of Bremen (Germany) was set up to “provide insight into the most important influences on Europe’s young people, their lifestyle behaviors and their eating habits as they move into adolescence”.

For this study, 111 normal‐weight European children and adolescents (from Spain, Italy, Cyprus, Germany, Belgium, Estonia, Hungary, and Sweden) participating in the I.Family Study, were divided into two groups based upon self‐reported sleep duration, according to the recommended amount of sleep for pediatric populations. Minimum normal sleep time for children younger than 13 years was set at nine hours per day and for children older than 13 at eight hours per day. Levels of microRNAs were determined following extraction from blood samples in single assays performed in triplicate by real‐time quantitative PCR (RT‐qPCR).

MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation. In addition to miRNAs playing an essential role in tumor development, dysregulation of certain miRNAs has been associated with many different diseases, such as dementia, and cardiovascular conditions.

Results revealed that sleep duration reflected the profile of specific circulating miRNAs in school‐aged children and adolescents. Group differences (short sleepers versus normal sleepers) were found in circulating levels of miR‐26b‐3p and miR‐485‐5p, adjusting for country of origin, age, sex, pubertal status, screen time and highest educational level of parents.

"Our findings show for the first time that the sleep duration reflects the profile of specific circulating microRNAs in school-aged children and adolescents. This could allow clinicians to easily determine if children are sleeping enough by using a simple blood test and use this as an indication of other aspects of their health," said contributing author Dr. Fabio Lauria, a researcher at the Italian Institute of Food Sciences (Rome, Italy).

The study was published in the January 8, 2020, online edition of the journal Experimental Physiology.

Related Links:
University of Bremen
I.Family Study
Institute of Food Sciences


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more