LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Molecular Assays Compared for Gastrointestinal Pathogens

By LabMedica International staff writers
Posted on 27 Aug 2019
Print article
Image: Allplex gastrointestinal full-panel assays for the detection and identification of 25 gastrointestinal pathogens (six viruses, 13 bacteria and six parasites) using One-step RT Real-time PCR (Photo courtesy of Seegene).
Image: Allplex gastrointestinal full-panel assays for the detection and identification of 25 gastrointestinal pathogens (six viruses, 13 bacteria and six parasites) using One-step RT Real-time PCR (Photo courtesy of Seegene).
Infectious gastroenteritis is caused by infection with bacteria, viruses, or parasites. It is a major public health problem, being a leading cause of morbidity and mortality worldwide. Despite public health efforts in food safety education and water treatment systems, pathogen-induced acute diarrheal disease is still a significant cause of morbidity and mortality globally.

Various laboratory tests, including routine bacterial culture, serologic enzyme immunoassays (EIAs) for viruses, molecular analysis using polymerase chain reaction (PCR) for bacteria and viruses, and microscopy for parasites are routinely performed for patients with vomiting, diarrhea, and abdominal pain to rule out common GI pathogens. Rapid turnaround time is important for diagnosis, clinical management, and infection control.

Medical Laboratory Scientists at The Catholic University of Korea (Seoul, Korea) collected a total of 858 stool samples submitted to the department of laboratory medicine in the hospital between January and October 2016. Each sample was submitted for one of four different microbiological tests: 197 samples (23%) for in-house multiplex polymerase chain reaction (PCR) assays for diarrheagenic Escherichia coli and Salmonella spp.; 182 samples (21%) for routine bacterial culture, 175 samples (20%) for toxigenic Clostridium difficile culture and Xpert C difficile/Epi, and 304 samples (36%) for norovirus and rotavirus antigen test. All three assays allowed the use of raw stool samples.

Other methods used in the study included the Allplex Gastrointestinal Full Panel Assay with 24 targets: 13 bacteria, five viruses, and six parasites in four panels; the xTAG Gastrointestinal Pathogen Panel with 15 targets: nine bacteria, three viruses, and three parasites; and the BD MAX Enteric panel with five bacteria and three parasites. Other tests were used for confirmation.

The scientists reported that the overall positive percentage agreements of Seegene, Luminex, and BD MAX were 94% (258/275), 92% (254/275), and 78% (46/59), respectively. For Salmonella, Luminex showed low negative percentage agreement because of frequent false positives (n = 31) showing low median fluorescent intensity. For viruses, positive/negative percentage agreements of Seegene and Luminex were 99%/96% and 93%/99%, respectively. Compared with routine microbiology testing, Seegene, Luminex, and BD MAX additionally identified 39, 40, and 12 pathogens, respectively. Sixty-one cases, 16 cases with Seegene, 51 cases with Luminex, and one case with BD MAX, showed positive results for multiple pathogens, but only three were consensus positive.

The authors concluded that the three multiplex molecular assays showed substantial to almost perfect agreement, and they allowed additional identification of GI pathogens. These multiplex molecular assays appear to be a promising tool for the simultaneous detection of multiple GI pathogens. To decide which of these assays to use as a routine diagnostic procedure, various factors, such as range of pathogens detected, cost, throughput, hands-on time, and required technical skills, should be considered. The study was published in the August 2019 issue of the journal Archives of Pathology & Laboratory Medicine.

Related Links:
The Catholic University of Korea

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more