LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

3D-Printed Device Detects Biomarkers of Preterm Birth

By LabMedica International staff writers
Posted on 06 Jun 2019
Print article
Image: A diagram of the 3D-printed microchip electrophoresis device that can sensitively detect three serum biomarkers of preterm birth (Photo courtesy of Brigham Young University).
Image: A diagram of the 3D-printed microchip electrophoresis device that can sensitively detect three serum biomarkers of preterm birth (Photo courtesy of Brigham Young University).
Preterm birth (PTB), defined as birth before the 37th week of gestation, is the leading complication of pregnancy and it affects about 1 in 10 pregnancies worldwide. Preterm infants can suffer complications such as neurological, respiratory and cardiac problems and, in some cases, even death.

Scientists have previously identified biomarker peptides and proteins in maternal serum that can fairly accurately predict PTB at 28 weeks of gestation. However, existing methods for detecting the biomarkers are laborious or not very sensitive. Now scientists have created a 3D-printed microchip electrophoresis device that can sensitively detect three serum biomarkers of PTB.

Biochemists at Brigham Young University (Provo, UT, USA) demonstrated for the first time the creation of microchip electrophoresis devices with ∼50 μm cross-sectional dimensions by stereolithographic 3D printing and their application in the analysis of medically significant biomarkers related to risk for preterm birth (PTB).

The team printed their device onto a glass slide using a 3D printer with a custom resin as the ink. To achieve the best separation of three peptide biomarkers by electrophoresis, they optimized the device design, as well as parameters such as applied voltages and buffer identity and composition. The 3D-printed microchip could detect the three PTB biomarkers in the picomolar to low nanomolar range. They determined that device current was linear with applied potential up to 800 V (620 V/cm). The group optimized device and separation conditions using fluorescently labeled amino acids as a model system and compared the performance in their 3D printed microfluidic devices to that in other device materials commonly used for microchip electrophoresis analysis.

The authors concluded that they had demonstrated for the first time microchip electrophoresis in a 3D printed device of three PTB biomarkers, including peptides and a protein, with suitable separation characteristics. Limits of detection for microchip electrophoresis in 3D printed microfluidic devices were also determined for PTB biomarkers to be in the high picomolar to low nanomolar range. The study was published on May 6, 2019, in the journal Analytical Chemistry.

Related Links:
Brigham Young University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more