LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blood Test Measures Effectiveness of Aggressive Cancer Treatments

By LabMedica International staff writers
Posted on 27 May 2019
Print article
Image: A lymph node with almost complete replacement by metastatic melanoma. The brown pigment is focal deposition of melanin (Photo courtesy of Gabriel Caponetti, MD).
Image: A lymph node with almost complete replacement by metastatic melanoma. The brown pigment is focal deposition of melanin (Photo courtesy of Gabriel Caponetti, MD).
Blood tests that track the amount of tumor DNA can, after only one month of drug therapy, detect how well treatment is working in patients with skin cancer. In the USA, more than 7,200 individuals are expected to die from metastatic melanoma in 2019, with BRAF mutations playing a role in nearly half of such diagnoses.

A recent study takes advantage of the nature of cancer cells, which die and are replaced by new cells continuously as part of aggressive cancer growth. Tumor cells burst as they die, spilling their DNA into the bloodstream, where it can be measured by tests, enabling improved diagnosis and better targeting of treatment based on each individual tumor's DNA.

A team of scientists led by NYU School of Medicine (New York, NY, USA) analyzed blood samples from 345 male and female patients with stage III or IV melanoma, which had already spread from the skin to other organs, and who had BRAF mutations. These patients could not be treated surgically and were part of a larger group of patients participating in a clinical trial of the drugs dabrafenib and trametinib, designed to target BRAF-mutated cancers. The circulating tumor DNA (ctDNA) test was developed by Bio-Rad Laboratories.

Among the study's key findings was that the tumor's BRAF mutation could be detected by the new blood test in 93% of the patients before treatment started. In addition, the team found that BRAF ctDNA levels were no longer detectable after one month of therapy in the 40% of patients who had a positive clinical outcome after targeted therapy, as measured by an average survival time of 28 months. By contrast, the 60% of patients who did not respond as well still had detectable ctDNA levels, and survived for an average of just 14 months.

David Polsky, MD, PhD, a professor of Dermatology and the senior study investigator, said, “Our study offers firm evidence that tracking this genetic information may be helpful in identifying patients whose cancers shrink and who survive longer as a result of a particular drug regimen. If further testing proves successful, monitoring blood samples for BRAF could give us an early indication of whether or not we need to adjust a patient's treatment plan.” The study was presented at the American Society of Clinical Oncology annual meeting, which was held May 31-June 4, 2019, in Chicago, IL, USA.

Related Links:
NYU School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more