We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

RNA Defects Linked to Multiple Myeloma Progression

By LabMedica International staff writers
Posted on 14 Nov 2018
Print article
Image: Bone marrow aspirate from a patient with multiple myeloma showing plasmacytosis (Photo courtesy of Feinberg School of Medicine).
Image: Bone marrow aspirate from a patient with multiple myeloma showing plasmacytosis (Photo courtesy of Feinberg School of Medicine).
Multiple myeloma (MM) is the second most common type of blood cancer where cancer cells accumulate in the bone marrow, crowding out healthy blood cells. Studies on MM development have traditionally focused mostly on DNA abnormalities.

Survival rates for MM patients have significantly improved over the years with multiple new drug discoveries for the disease. However, about 10% to 15% continue to be classified as high risk patients with low survival rates even when treated with the available drugs, as they develop resistance to the drug treatments.

Scientists at the National University of Singapore (Singapore) have uncovered an association between RNA abnormalities and multiple myeloma progression. The findings offer novel insights for new, effective therapeutic strategies to be developed. The team discovered that overexpression of double-stranded RNA-specific adenosine deaminase (ADAR1), a RNA-editing enzyme, and a modified gene caused by irregular RNA editing are key to MM progression and the development of resistance to current treatments.

The team's analysis revealed that that the MM RNA exists in an abnormally modified state, which consequently promotes MM progression in two ways. The first is an abnormally elevated level of ADAR1 expression in myeloma cancer cells. This overexpression of ADAR1 causes myeloma cancer cells to acquire stronger cancer properties. The second is the irregular RNA editing of Nei Like DNA Glycosylase 1 (NEIL1), a gene associated with lung carcinoma and colorectal cancer. NEIL1-edited myeloma cancer cells demonstrate a more cancerous nature where they lose the ability to repair DNA damage and show increased resistance to a standard MM drug. Collectively, patients with high ADAR1 expression and compromised NEIL1 function were found to be less responsive towards the available treatments for MM.

Chng Wee Joo, MB ChB, PhD, FRCP, FRCPath, FAMS, a professor and the Senior Principal Investigator, said, “Our study has shown that RNA defects is both clinically and biologically relevant in MM, and by exploring these RNA abnormalities further, we may unravel more novel insights on MM molecular pathogenesis. Each piece of new knowledge derived will be key in helping to complete the puzzle of MM biology, paving the way for the development of innovative therapies that can curb drug resistance and raise the survival rates of high risk MM patients.” The study was originally published on September 20, 2018, in the journal Blood.

Related Links:
National University of Singapore

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more