We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Myeloproliferative Neoplasms Fall into Genetic Subgroups

By LabMedica International staff writers
Posted on 31 Oct 2018
Print article
Image: A blood smear from a 68-year-old woman with a 13-year history of polycythemia vera and there are three red blood cell precursors present and slight to moderate anisopoikilocytosis (Photo courtesy of The Armed Forces Institute of Pathology).
Image: A blood smear from a 68-year-old woman with a 13-year history of polycythemia vera and there are three red blood cell precursors present and slight to moderate anisopoikilocytosis (Photo courtesy of The Armed Forces Institute of Pathology).
Myeloproliferative neoplasms are a group of chronic blood cancers associated with a risk of bleeding and blood clots, but they can also progress to more advanced disease, including leukemia.

The current classification system divides these blood cancers into groups based on their clinical and laboratory features, but there is some overlap between the categories. The genomic characterization of patients with myeloproliferative neoplasms offers the potential for personalized diagnosis, risk stratification, and treatment.

A large team of scientists working with the Wellcome Trust Sanger Institute (Hinxton, UK) sequenced coding exons from 69 myeloid cancer genes in patients with myeloproliferative neoplasms, comprehensively annotating driver mutations and copy-number changes. They developed a genomic classification for myeloproliferative neoplasms and multistage prognostic models for predicting outcomes in individual patients. Classification and prognostic models were validated in an external cohort.

DNA samples underwent library preparation at the Wellcome Trust Sanger Institute, Cambridge, UK. The team used 1,033 granulocyte derived DNA samples that underwent whole genome amplification prior to library preparation. Sequencing libraries were generated in a 96-well format, with each sample carrying a unique DNA barcode. Pools of 16 libraries were made and hybridized to RNA baits. Pools of 96 cases were sequenced on two lanes of a HiSeq 2500 machine using 75bp paired-end sequencing.

The team included a total of 2,035 patients in the analysis. A total of 33 genes had driver mutations in at least five patients, with mutations in JAK2, CALR, or MPL being the sole abnormality in 45% of the patients. The numbers of driver mutations increased with age and advanced disease. Driver mutations, germline polymorphisms, and demographic variables independently predicted whether patients received a diagnosis of essential thrombocythemia as compared with polycythemia vera or a diagnosis of chronic-phase disease as compared with myelofibrosis.

The investigators defined eight genomic subgroups that showed distinct clinical phenotypes, including blood counts, risk of leukemic transformation, and event-free survival. Integrating 63 clinical and genomic variables, they created prognostic models capable of generating personally tailored predictions of clinical outcomes in patients with chronic-phase myeloproliferative neoplasms and myelofibrosis. At the same time, they were able to identify a subgroup that was at low risk of disease progression, which might not benefit from aggressive treatment and instead could be treated more conservatively.

Jyoti Nangalia, PhD, a consultant hematologist and co-author of the study, said, “Our new online calculator takes genetic and clinical information available for a patient and makes a prediction of the future outcome of that particular person's disease. In the future, this could be used to reassure patients who have a good predicted outcome, and identify patients who are at risk of developing severe disease who could benefit from an alternative treatment approach.” The study was published on October 11, 2018, in The New England Journal of Medicine.

Related Links:
Wellcome Trust Sanger Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more