LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blood-Based Test Predicts Benefits of Lung Cancer Treatment

By LabMedica International staff writers
Posted on 22 Aug 2018
Print article
Image: A histopathology of non-small cell lung cancer from a fine needle aspirate showing marked variation in nuclear size and shape, irregularly distributed nuclear chromatin, and large, prominent nucleoli (Photo courtesy of Ed Uthman, MD).
Image: A histopathology of non-small cell lung cancer from a fine needle aspirate showing marked variation in nuclear size and shape, irregularly distributed nuclear chromatin, and large, prominent nucleoli (Photo courtesy of Ed Uthman, MD).
Although programmed death-ligand 1–programmed death 1 (PD-L1–PD-1) inhibitors are broadly efficacious, improved outcomes have been observed in patients with high PD-L1 expression or high tumor mutational burden (TMB).

PD-L1 testing is required for checkpoint inhibitor monotherapy in front-line non-small-cell lung cancer (NSCLC). However, obtaining adequate tumor tissue for molecular testing in patients with advanced disease can be challenging. Thus, an unmet medical need exists for diagnostic approaches that do not require tissue to identify patients who may benefit from immunotherapy.

A large team of scientists led by those at UC Davis Comprehensive Cancer Center (Sacramento, CA, USA) have developed a novel, technically robust, blood-based assay to measure TMB in plasma that is distinct from tissue-based approaches. Using a retrospective analysis of two large randomized trials as test and validation studies, they showed that bTMB reproducibly identifies patients who derive clinically significant improvements in progression-free survival from an anti-PD-L1atezolizumab in second-line and higher NSCLC.

Investigators reported on the retrospective application of the test to more than 1,000 samples from patients with advanced NSCLC who participated in Genentech's Phase II POPLAR and Phase III OAK clinical trials. The POPLAR trial samples were used first, to identify blood-based TMB thresholds that reflect the discriminatory ability of tissue-based TMB. The positive predictive agreement for different cutoff points ranged from about 86% to 100%, and negative predictive agreements were spread between 82% and 100%. Overall, investigators calculated that the assay's performance was optimized at three different cut-points: bTMB of ten or more, 16 or more, and 20 or more mutations.

Based on results in the POPLAR cohort, the investigators narrowed down to the 16-mutation cutoff point for analysis in the OAK study. According to the authors, OAK study patients with at least 16 total mutations as calculated by the bTMB assay had significantly improved progression-free survival when treated with atezolizumab versus docetaxel chemotherapy with a hazard ratio of 0.65. In addition, patients' bTMB results did not appear to correlate with PD-L1 expression levels, suggesting that the test provides independent predictive information that cannot be determined using PD-L1. They concluded that their data shows that high bTMB is a clinically actionable biomarker for atezolizumab in NSCLC.

David R. Gandara, MD, a professor and the lead author of the study, said, “These are exciting times in lung cancer immunotherapy. Having a blood test that can identify those patients most likely to benefit would be a huge advantage for both physicians and patients. This publication is the first step toward what I anticipate will be full clinical application of this assay.” The study was published on August 6, 2018, in the journal Nature Medicine.

Related Links:
UC Davis Comprehensive Cancer Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more