LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Current-Tunneling Measurements Analyze Single DNA Molecules

By LabMedica International staff writers
Posted on 09 Jul 2018
Print article
Image: An artist\'s depiction of the operating principle of single-molecule sequencing (Photo courtesy of Osaka University).
Image: An artist\'s depiction of the operating principle of single-molecule sequencing (Photo courtesy of Osaka University).
A team of Japanese genomics researchers has devised a method for cancer diagnosis, which is based on the analysis of single molecules of DNA without the need for chemical modification or amplification.

Cancer can be diagnosed by identifying DNA and microRNA base sequences that have the same base length yet differ in a few base sequences, if the abundance ratios of these slightly deviant base sequences can be determined. However, such quantitative analyses cannot be performed using the current DNA sequencers.

In this regard, investigators at Osaka University (Japan) used current-tunneling measurements to determine the entire base sequences of four types of DNA corresponding to the let-7 microRNA, which is a 22-base cancer marker.

The tunneling currents flowing through single molecules were measured by gold electrodes – maintained at a distance of 0.75 nanometers from each other, equivalent to the size of a DNA base molecule – using a mechanically controllable break-junction. Single-molecule signals were obtained in forms of current spikes, whose height represented the electron transport through the molecule. Since this method measured single molecules, it did not require chemical modification of DNA or amplification by PCR.

As the method measured individual DNA molecules, two or more base sequences could be determined by measuring a solution of DNA molecules with two or more types of base sequences. Furthermore, since this method could count the number of DNA molecules that contained a specific base sequence, quantitative analysis could detect the base sequences and determine their frequency.

"Because the single-molecule sequencing method detects differences in the electronic states of molecules in terms of single-molecule conductances, it may also be applied to the analysis of microRNA and RNA molecules that include four base molecules and peptides that include 20 kinds of amino acids," said senior author Dr. Masateru Taniguchi, a professor in the institute of scientific and industrial research at Osaka University. "Also, as the method can detect chemically modified base molecules and amino acids, it represents a substantive step toward realizing personalized genomic diagnosis of cancer and other diseases."

The current-tunneling method was described in a paper published in the June 4, 2018, online edition of the journal Scientific Reports.

Related Links:
Osaka University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more