LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Test Identifies BRCA2 Gene Mutations for Cancers

By LabMedica International staff writers
Posted on 05 Feb 2018
Print article
Image: Endometrioid ovarian carcinoma cells show nuclear staining for BRCA2 (right panel); BRCA2-negative staining in endometrioid ovarian carcinoma (left panel) (Photo courtesy of The University of Texas MD Anderson Cancer Center).
Image: Endometrioid ovarian carcinoma cells show nuclear staining for BRCA2 (right panel); BRCA2-negative staining in endometrioid ovarian carcinoma (left panel) (Photo courtesy of The University of Texas MD Anderson Cancer Center).
Many variants of uncertain significance (VUS) have been identified in breast cancer 2 (BRCA2) through clinical genetic testing. VUS pose a significant clinical challenge because the contribution of these variants to cancer risk has not been determined.

A new test recently developed shows which mutations in the BRCA2 gene make women susceptible to developing breast or ovarian cancers. The laboratory-based test can establish which inherited mutations called VUS in the BRCA2 gene are involved in cancer.

Scientists at the Mayo Clinic (Rochester, MN, USA) and their colleagues conducted a comprehensive assessment of VUS in the BRCA2 C-terminal DNA binding domain (DBD) by using a validated functional assay of BRCA2 homologous recombination (HR) DNA-repair activity and defined a classifier of variant pathogenicity.

Among 139 variants evaluated, 54 had equal to or greater than 99% probability of pathogenicity, and 73 had equal to or greater than 95% probability of neutrality. Functional assay results were compared with predictions of variant pathogenicity from the Align-GVGD protein-sequence-based prediction algorithm, which has been used for variant classification. Relative to the HR assay, Align-GVGD significantly over-predicted pathogenic variants.

The team subsequently combined functional and Align-GVGD prediction results in a Bayesian hierarchical model (VarCall) to estimate the overall probability of pathogenicity for each VUS. In addition, to predict the effects of all other BRCA2 DBD variants and to prioritize variants for functional studies, they used the endoPhenotype-Optimized Sequence Ensemble (ePOSE) algorithm to train classifiers for BRCA2 variants by using data from the HR functional assay.

Fergus J. Couch, PhD, the senior investigator of the study said, “Up until now, it has only been possible to establish that 13 inherited mutations in BRCA2 are pathogenic and known to cause cancer. In this study, we identified 54 that increase the risk of cancer. Similarly, 21 known neutral mutations that do not increase risk of cancer can now be expanded to 73. These findings may help patients and their health care providers make better decisions about how to deal with information obtained through genetic testing.” The study was published on January 25, 2018, in the American Journal of Human Genetics.


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more