LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Rapid POC Assay Detects Micronutrient Deficiencies

By LabMedica International staff writers
Posted on 18 Dec 2017
Print article
Image: The NutriPhone is a mobile diagnostics platform for monitoring individual vitamin and micronutrient levels was adapted to work with a rapid point-of-care assay system (Photo courtesy of Cornell University).
Image: The NutriPhone is a mobile diagnostics platform for monitoring individual vitamin and micronutrient levels was adapted to work with a rapid point-of-care assay system (Photo courtesy of Cornell University).
A technology that could transform the way nutritional deficiency testing is done worldwide is based on a novel 15-minute point-of-care assay system that enables determination of vitamin A, iron, and inflammation status.

Micronutrient deficiencies such as vitamin A and iron affect a third of the world’s population with consequences such as blindness, higher child mortality, anemia, poor pregnancy outcomes, and reduced work capacity. Many efforts to prevent or treat these deficiencies are hampered by the lack of adequate, accessible, and affordable diagnostic methods that can enable better targeting of interventions.

To rectify this situation, investigators at Cornell University (Ithaca, NY, USA) developed a rapid diagnostic test and mobile enabled platform for simultaneously quantifying iron (ferritin), vitamin A (retinol-binding protein), and inflammation (C-reactive protein) status.

This method combines multiple florescent markers and immunoassay approaches in a single test, allowing accurate quantification in 15 minutes even though the physiological range of the markers of interest vary over five orders of magnitude. The investigators reported sensitivities of 88%, 100%, and 80% and specificities of 97%, 100%, and 97% for iron deficiency (ferritin), vitamin A deficiency (retinol-binding protein) and inflammation status (C-reactive protein), respectively.

The novel test system was deemed suitable for point-of-care use in both resource-rich and resource-limited settings and can be read either by a standard laptop computer or with the NutriPhone dedicated smartphone application.

“We must address the micronutrient problem at the individual level – which is a much easier task. The key to solving these micronutrient deficiency problems is early detection and early intervention,” said senior author Dr. David Erickson, professor of mechanical engineering at Cornell University. “Having information, we can change or supplement diets, if we know who is deficient – and we are more likely to prevent complications, and keep children and women healthy.”

The rapid diagnostic system was described in the December 4, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences.

Related Links:
Cornell University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more