LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Combination of Antibiotics Can Eradicate Super Pathogens

By LabMedica International staff writers
Posted on 08 Jun 2017
Print article
Image: A scanning electron micrograph (SEM) of multidrug-resistant Klebsiella pneumoniae gram-negative bacteria that are known to cause severe hospital-acquired infections (Photo courtesy of Dr. David Dorward, PhD).
Image: A scanning electron micrograph (SEM) of multidrug-resistant Klebsiella pneumoniae gram-negative bacteria that are known to cause severe hospital-acquired infections (Photo courtesy of Dr. David Dorward, PhD).
ESKAPE pathogens are a group of antimicrobial-resistant bacteria that pose a grave threat, causing more than two million infections and nearly 23,000 deaths a year. The six super bacteria are also responsible for a substantial number of infections in hospitals.

The emergence of polymyxin resistance threatens to leave clinicians with few options for combatting drug-resistant Acinetobacter baumannii. Combinations of three antibiotics, that are each ineffective against superbugs when used alone, are capable of eradicating two of the six ESKAPE pathogens when delivered together.

An international team of scientists collaborating with the University at Buffalo (NY, USA) studied two clonally related, paired, A. baumannii isolates collected from a critically ill patient who developed colistin resistance while receiving colistin methanesulfonate in a clinical population pharmacokinetic study. They evaluated: an A. baumannii isolate collected before (03-149.1, polymyxin-susceptible, MIC 0.5 mg/L) and an isolate collected after (03-149.2, polymyxin-resistant, MIC 32 mg/L, carbapenem-resistant, ampicillin/sulbactam-resistant). The team tested combinations of the antibiotics polymyxin B, meropenem and ampicillin-sulbactam against the pathogen A. baumannii. The bacterium Klebsiella pneumoniae was treated with polymyxin B, meropenem, and rifampin.

The antibiotics were applied to the bacterial samples individually, in pairs and in triple combinations. Both the time needed for the antibiotics to kill the bacteria and the time it took for the pathogens to repopulate was measured. For the tests on A. baumannii, none of the antibiotics were able to kill the bacteria when used alone. Of the pairs of antibiotics, only the grouping of polymyxin B and meropenem was able to effectively kill the pathogen, but the bacteria gradually regrew over three days. The triple combination achieved a similar kill rate to the pair of polymyxin B and meropenem, but the addition of ampicillin-sulbactam prevented regrowth of the pathogen. Within 96 hours, no viable bacteria cells were detected after exposure to all three antibiotics.

In the tests against Klebsiella pneumoniae individual antibiotics were unable to sustain the killing of bacteria over a 24-hour period. The most effective double combination was polymyxin B and rifampin, which killed bacteria for up to 30 hours before the population regrew to initial levels. The triple combination of polymyxin B, meropenem, and rifampin produced the highest kill rates and tripled the time it took for bacteria to regrow to 72 hours. Rifampin, scientists suspect, temporarily suppresses the antibiotic resistance of Klebsiella pneumoniae, allowing the trio to destroy the bacteria.

Justin Lenhard, PharmD, the first author of the investigation, said, “Each antibiotic was chosen to complement the other drugs' mechanisms of bacterial killing. By combining antimicrobials that exert their bacterial killing in different ways, it is possible to outmaneuver the ESKAPE pathogens and completely overwhelm the bacteria's defensive countermeasures.” The most recent study was published in the June 2017 issue of the journal Antimicrobial Agents and Chemotherapy.

Related Links:
University at Buffalo

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more