We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Genetic Variants Discovered in Blood Group Systems

By LabMedica International staff writers
Posted on 10 Feb 2017
Print article
Image: Researchers discovered 1,000 new gene variants in blood group data (Photo courtesy of Fotalia).
Image: Researchers discovered 1,000 new gene variants in blood group data (Photo courtesy of Fotalia).
On the surface of the red blood cells are proteins and sugar molecules, in which small differences give rise to different antigens. The ability to identify and match blood group types is important for blood transfusions, but also in pregnancy and before certain types of transplantation.

Next-generation sequencing (NGS) is rapidly moving toward routine practice for patient and donor typing and has the potential to remedy some of the limitations of currently used platforms. However, a large-scale investigation into the blood group genotypes obtained by NGS in a multiethnic cohort is lacking.

Scientists at Lund University extracted data from the 1,000 Genomes Project, which provides information on genome variation among 2,504 individuals representing 26 populations worldwide. They extracted their NGS data for all 36 blood group systems to a custom-designed database. In total, 210,412 alleles from 43 blood group–related genes were imported and curated. They developed matching algorithms to compare them to blood group variants identified to date.

The team found of the 1,241 non-synonymous variants identified in the coding regions, 241 are known blood group polymorphisms. Interestingly, 357 of the remaining 1.000 variants are predicted to occur on extracellular portions of 31 different blood group–carrying proteins and some may represent undiscovered antigens. Of the alleles analyzed, 1,504 were not previously described. The study showed that 89% of the genetic variants were previously known, but among the remaining 11% were a total of 1,000 different mutations which were absent from official catalogues of known blood group variants.

The results were exported to an online search engine, www.erythrogene.com, which presents data according to the allele nomenclature developed for clinical reporting by the International Society of Blood Transfusion. Mattias Möller, a doctoral student who developed the program, said, “Never before has there been a worldwide mapping of blood group genes in healthy individuals. Most previously known blood group variants were discovered when a blood transfusion failed, i.e. when it didn't work between the donor and the recipient. I started from the genes instead, to find variations in DNA which might give rise to a new antigen, likely to cause problems in case of transfusion, for example.” The study was published on December 27, 2016, in the journal Blood Advances.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more