We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Monitoring System Evaluated For Antiphospholipid Syndrome Patients

By LabMedica International staff writers
Posted on 03 Nov 2016
Print article
Image: The Protime InRhythm microcoagulation system kit (Photo courtesy of International Technidyne Corporation).
Image: The Protime InRhythm microcoagulation system kit (Photo courtesy of International Technidyne Corporation).
Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), or often also Hughes syndrome, is an autoimmune, hypercoagulable state caused by antiphospholipid antibodies.

APS provokes blood clots (thrombosis) in arteries and veins as well as pregnancy-related complications such as miscarriage, stillbirth, preterm delivery, and severe preeclampsia. Patients on anticoagulant therapy with vitamin K antagonists (VKA) need frequent International Normalized Ratio (INR) monitoring. The reliability of point-of-care (POC) devices for measuring INR needs rigorous evaluation, particularly in patients with APS.

Scientists at the University of Milan (Italy) compared a POC- INR device versus the laboratory INR measurement for blood samples from 29 APS-positive and 31 APS-negative patients consecutively enrolled. Chromogenic factor X assay was used to evaluate anticoagulation. Bland–Altman difference plot for paired INR (POC versus laboratory) was used to evaluate agreement between the device and the laboratory method. The device INR relationship with factor X chromogenic assay was evaluated by orthogonal regression analysis.

The team evaluated the accuracy of the ProTime InRhythm System (International Technidyne Corporation, Piscataway, NJ, USA), which consists of an instrument and disposable cuvettes. Each cuvette consists of two PT microchannels containing human recombinant thromboplastin to analyze a patient’s sample in duplicate to ensure accurate results, and a third internal control channel that is activated each time a test is performed to verify the integrity of the reagents and proper test procedure.

The scientists found that overall, 97% of the POC device INR measurements were similar to laboratory INR values with an absolute difference less than 0.4 units. Correlation coefficient for the device INR versus factor X was −0.69, (CI 95% −0.80 to −0.52). The authors concluded that The ProTime InRhythm System is an accurate point-of-care device for measuring INR also in patients with and without APS. The study was published in the October 2016 issue of the International Journal of Laboratory Hematology.

Related Links:
University of Milan
International Technidyne Corporation
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more