We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Newly Developed Mobile Phone Device Reads ELISA Plates

By LabMedica International staff writers
Posted on 17 Aug 2015
Print article
Image: The new miniature ELISA microplate reader device is created with a 3-D printer and attaches to a smartphone, enabling clinicians to perform lower-cost rapid diagnostic ELISA tests at point-of-care, including in many resource-poor or field settings (Photo courtesy of UCLA).
Image: The new miniature ELISA microplate reader device is created with a 3-D printer and attaches to a smartphone, enabling clinicians to perform lower-cost rapid diagnostic ELISA tests at point-of-care, including in many resource-poor or field settings (Photo courtesy of UCLA).
A multidisciplinary team of scientists and clinicians have developed a handheld smartphone-based device that can quickly read standard 96-well microplates with the same level of accuracy as the platforms commonly used in central clinical laboratories. The device, made by 3-D printing, attaches to the smartphone.

The research team from the University of California Los Angeles (UCLA; Los Angeles, CA, USA), led by Prof. Aydogan Ozcan along with Prof. Dino Di Carlo and Prof. Omai Garner, developed the ELISA reader to enable clinicians to perform these tests at lower cost and with greater flexibility for testing at point-of-care (POC), including in many resource-poor or field settings. “It is quite important to have these kinds of mobile devices, especially for administering medical tests that are usually done in a hospital or clinical laboratory,” said Prof. Ozcan, “This mobile platform can be used for point-of-care testing, screening populations for particular diseases, or tracking vaccination campaigns in most resource-poor settings.”

ELISA testing is most commonly performed with the standard 96-well transparent plastic plates that resemble honeycombs. The new device illuminates the plate with an array of light-emitting diodes (LEDs). The light projected through each well is collected by 96 individual plastic optical fibers. The smartphone transmits the resulting images to UCLA servers through a custom-designed app. The images are then analyzed by a machine-learning algorithm and the results are sent back to the phone for viewing within about 1 minute for the entire 96-well plate.

This mobile platform was compared with the standard FDA-approved well-plate readers at a UCLA clinical microbiology laboratory. The comparison included ELISA tests for mumps, measles, and herpes simplex viruses 1 and 2. Of a total of 571 patient samples, the mobile platform achieved 99.6% accuracy in diagnosing mumps, 98.6% for measles, and 99.4% each for herpes simplex 1 and 2.

“Our team is focused on developing biomedical technologies that work with mobile platforms to assist with on-site testing and health-care in disadvantaged or rural areas,” said Mr. Berg. Prof. Di Carlo added, “We are always looking toward the next innovation, and are looking to adapt the basic design of this ELISA cellphone reader to create smartphone-based quantified readers for other important medical tests.”

The work, by Berg B, et al, was reported online July 9, 2015, in the American Chemical Society journal ACS Nano.

Related Links:

UCLA
California NanoSystems Institute (at UCLA and UCSB)


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A massive study has identified new biomarkers for renal cancer subtypes, improving diagnosis and treatment (Photo courtesy of Jessica Johnson)

Novel Biomarkers to Improve Diagnosis of Renal Cell Carcinoma Subtypes

Renal cell carcinomas (RCCs) are notably diverse, encompassing over 20 distinct subtypes and generally categorized into clear cell and non-clear cell types; around 20% of all RCCs fall into the non-clear... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more