LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Synthetic Gene Networks Enable Rapid Virus Detection

By LabMedica International staff writers
Posted on 04 Nov 2014
Print article
Image: Schematic diagram of the Synthetic Gene Network for detecting viral RNA molecules (Photo courtesy of the Wyss Institute).
Image: Schematic diagram of the Synthetic Gene Network for detecting viral RNA molecules (Photo courtesy of the Wyss Institute).
An original method for using engineered gene circuits has been developed that allows investigators to safely activate the cell-free, paper-based system by simply adding water.

The low-cost, easy-to-use synthetic gene network platform that can control the activity of genes and recognize nucleic acids and small molecules could enable the rapid detection of different strains of deadly viruses such as Ebola.

Scientists at the Wyss Institute for Biological Inspired Engineering (Harvard University, Boston, MA, USA) developed a cell-free, paper-based system suitable for use outside specialized laboratories. To test the clinical relevance of their method, they developed sensors capable of detecting ribonucleic acid (RNA) molecules made from genes that allow bacteria to survive antibiotics, as well as RNA molecules encoding proteins from two different strains of the highly deadly Ebola virus. When freeze-dried onto paper, the sensors quickly detected the presence of these RNA molecules demonstrating the usefulness of the approach for diagnostic purposes.

The scientists created circuits with colorimetric outputs for detection by eye and fabricated a low-cost, electronic optical interface for field use. They tested to see whether the enzyme activity required for transcription and translation could be reconstituted from freeze-dried cell-free expression systems, which normally require storage at -80 °C. A new generation of riboregulators was tested in an in vitro demonstration of toehold switches and these robust biomolecular switches provide tight translational regulation over transcripts and exhibit excellent orthogonality.

James J. Collins, PhD, a professor and senior author of the study, “Our paper-based system could not only improve tools currently only available in the laboratory, but would be readily useful for the field, and also improve the development of new tools. Considering the projected cost, reaction time, ease of use, and no requirement for laboratory infrastructure, we envision paper-based synthetic gene networks significantly expanding the role of synthetic biology in the clinic, global health, and education.” The study was published on October 23, 2014, in the journal Cell.

Related Links:

Wyss Institute for Biological Inspired Engineering



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more