We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Microfluidics Device Captures and Isolates Slow Growing Gut Bacteria

By LabMedica International staff writers
Posted on 15 Jul 2014
Print article
Image: Glass SlipChip for growing microbes, shown next to a US quarter dollar coin (left); fluorescent in situ hybridization image of the target organism (right, top); transmission electron microscopy image of a single cell of the target organism (right, bottom) (Photo courtesy of the California Institute of Technology).
Image: Glass SlipChip for growing microbes, shown next to a US quarter dollar coin (left); fluorescent in situ hybridization image of the target organism (right, top); transmission electron microscopy image of a single cell of the target organism (right, bottom) (Photo courtesy of the California Institute of Technology).
Microbiologists have used a novel "lab-on-a-chip" approach to isolate and cultivate fastidious, slow growing bacteria from the human digestive tract.

The majority of microbes that comprises the human gut biome have not been cultured, due in part to the difficulties of both identifying proper growth conditions and characterizing and isolating each species.

Investigators at the California Institute of Technology (Pasadena, USA) developed a microfluidics-based, genetically targeted approach to overcome these problems. Their "SlipChip" device was constructed from two glass slides, each the size of a credit card, that were etched with tiny grooves that became channels when the grooved surfaces were stacked atop one another. When a sample, such as a mixed assortment of bacterial species from a colonoscopy biopsy, was applied to the device, the interconnected channels of the top chip turned the channels into individual wells, with each well ideally holding a single microbe. Once sequestered in an isolated well, each individual bacterium was able to divide and grow without having to compete for resources with other types of faster-growing microbes.

The beauty of the system was that each well could be divided into two compartments. One compartment was used for DNA sequencing and mapping studies while the other maintained a living example of the microbe for further culture and study.

The investigators validated this approach by cultivating a bacterium from a human cecal biopsy. Genetic mapping of the organism showed that it was a representative of a previously unidentified genus of the Ruminococcaceae family and that its genetic signature was listed among the high-priority group of the [US] National Institutes of Health's Human Microbiome Project’s "Most Wanted" list.

"Although a genomic sequence of the new organism is a useful tool, further studies are needed to learn how this species of microbe is involved in human health," said senior author Dr. Rustem Ismagilov, professor of chemistry and chemical engineering at the California Institute of Technology.

The study was published in the June 25, 2014, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:

California Institute of Technology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more