Optical Biosensor Rapidly Detects Monkeypox Virus at Point of Care
By LabMedica International staff writers Posted on 18 Nov 2024 |

A new variant of human mpox has caused a mortality rate of approximately 5% among those infected in the Democratic Republic of the Congo since 2023, with many of the victims being children. This variant has since spread to multiple other countries. On August 14, the World Health Organization declared the outbreak a Public Health Emergency of International Concern. In addition, another variant of mpox, which is less fatal, triggered an outbreak that has now spread to more than 100 countries since 2022. The symptoms of mpox, such as fever, pain, rashes, and lesions, closely resemble those of other viral infections, making it difficult for clinicians to differentiate monkeypox from similar diseases just by observation. Currently, polymerase chain reaction (PCR) is the only approved diagnostic method for mpox. However, PCR is costly, requires a lab, and can take several days or even weeks to return results. Therefore, there is a pressing need for more efficient and cost-effective diagnostic tools to control the spread of mpox and prepare for potential future pandemics.
Researchers from the University of California San Diego School of Medicine (La Jolla, CA, USA), Boston University (Boston, MA, USA), and their colleagues have developed an optical biosensor capable of rapidly detecting monkeypox, the virus responsible for mpox. This innovative technology could enable clinicians to diagnose the disease at the point of care, eliminating the need to wait for lab results. In their study, the team utilized a digital detection platform called Pixel-Diversity interferometric reflectance imaging sensor (PD-IRIS) to identify the virus. They tested samples taken from the lesions of a patient with confirmed mpox by incubating them with monoclonal monkeypox antibodies that bind to the virus's surface proteins. This virus-antibody complex was then transferred into small chambers on silicon chips on the sensor’s surface, which were treated to fix these nanoparticles.
The sensor was activated by shining precise red and blue light wavelengths simultaneously on the chips, causing interference. This interference resulted in subtle variations in the response when the virus-antibody nanoparticles were present. A color camera captured this small signal and counted individual particles with high sensitivity. The team also analyzed samples from the herpes simplex virus and cowpox virus, which have similar clinical symptoms to mpox. The results, published in Biosensors and Bioelectronics, showed that the biosensor could effectively distinguish mpox from these other viruses, demonstrating its specificity in identifying monkeypox. Within two minutes, the test could confirm whether a patient has monkeypox, with the entire process, from sample collection to real-time data analysis, taking about 20 minutes.
In a clinical setting, the speed of this test would enable healthcare providers to diagnose mpox much more quickly than the traditional method of sending samples to a lab. This rapid diagnosis is especially crucial in regions with limited healthcare resources, as it can help curb the spread of the virus. Early diagnosis also allows clinicians to initiate treatment more promptly, if available. The researchers plan to mass-produce these tests in kit form for distribution to clinics, further reducing costs. A single kit could potentially test for multiple viruses, such as syphilis or HIV. The team aims to commercialize the technology, not only to address the urgent need for rapid mpox testing in the Democratic Republic of the Congo but also to prevent outbreaks from escalating into pandemics. However, the researchers emphasize that government support will be necessary to make these diagnostic tools available, as there is limited market interest in addressing future health threats.
Latest Technology News
- Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
- Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
- Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes
- Wireless Sweat Patch Could Be Used as Diagnostic Test for Cystic Fibrosis
- New Method Advances AI Reliability with Applications in Medical Diagnostics
- Self-Powered Microneedle Patch Collects Biomarker Samples Without Drawing Blood
- Skin Patch Detects Biomarkers in Interstitial Fluid Without Blood Draws
- Handheld Saliva Test Accurately Detects Breast Cancer
- Cutting-Edge AI Algorithms Enable Early Detection of Prostate Cancer
- New Microfluidic System Enables Early Cancer Diagnosis Using Simple Blood Tests
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreMolecular Diagnostics
view channel
2-Hour Cancer Blood Test to Transform Tumor Detection
Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more
Automated High Throughput Immunoassay Test to Advance Neurodegenerative Clinical Research
Alzheimer’s disease and other neurodegenerative disorders remain difficult to diagnose and monitor accurately due to limitations in existing biomarkers. Traditional tau and phosphorylated tau measurements... Read more
Ultrasensitive Test Could Identify Earliest Molecular Signs of Metastatic Relapse in Breast Cancer Patients
HR+ (hormone receptor-positive) HER2- (human epidermal growth factor receptor 2-negative) breast cancer represents over 70% of all breast cancer cases and carries a significant risk of late recurrence.... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Novel Tool Uses Deep Learning for Precision Cancer Therapy
Nearly 50 new cancer therapies are approved each year, but selecting the right one for patients with highly individual tumor characteristics remains a major challenge. Physicians struggle to navigate the... Read more
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read moreMicrobiology
view channel
Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Sepsis arises from infection and immune dysregulation, with neutrophils playing a central role in its progression. However, current clinical tools are unable to both isolate these cells and assess their... Read more
New Diagnostic Method Confirms Sepsis Infections Earlier
Sepsis remains one of the most dangerous medical emergencies, often progressing rapidly and becoming fatal without timely intervention. Each hour of delayed treatment in septic shock reduces patient survival... Read more
New Markers Could Predict Risk of Severe Chlamydia Infection
Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
Vaginal health depends on maintaining a balanced microbiome, particularly certain Lactobacillus species. Disruption of this balance, known as dysbiosis, can increase risks of infection, pregnancy complications,... Read morePathology
view channel
Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
High-grade serous carcinoma is a rare diagnosis in cervical biopsies and can be difficult to distinguish from other tumor types. Cervical serous carcinoma is no longer recognized as a primary cervical... Read moreIndustry
view channel
VedaBio Partners With Mammoth Biosciences to Expand CRISPR-Based Diagnostic Technologies
VedaBio (San Diego, CA, USA) has entered into a non-exclusive license agreement with Mammoth Biosciences (Brisbane, CA, USA) for the use of select CRISPR-based technologies in diagnostic applications.... Read more