Chip-Based Blood Test Accurately Diagnoses Heart Attack in Minutes
|
By LabMedica International staff writers Posted on 17 Oct 2024 |

Heart attacks demand immediate medical attention to improve patient outcomes; however, while early diagnosis is crucial, it can be quite challenging—and nearly impossible outside of a clinical environment. Diagnosing heart attacks remains one of the most difficult tasks due to the wide variability of symptoms and subtle biological signals that can be easily overlooked in the early stages of an attack when medical intervention can be most beneficial. Individuals suspected of experiencing a heart attack typically undergo a series of tests to confirm the diagnosis, usually beginning with electrocardiograms that measure the heart's electrical activity—a procedure that takes about five minutes—and blood tests to identify the indicators of a heart attack, where lab results can take at least an hour and often require repetition. A new blood test has now been developed that can diagnose a heart attack in minutes rather than hours, and it has the potential to serve as a tool for first responders and individuals at home.
Researchers at Johns Hopkins University (Baltimore, MD, USA) have published their proof-of-concept work in Advanced Science, which can be modified to detect infectious diseases and cancer biomarkers. The focus of the research has been on developing diagnostic tools through biophotonics, utilizing laser light to identify biomarkers—bodily responses to various conditions, including diseases. In this instance, they applied the technology to detect the earliest signs in the blood that indicate a heart attack. The stand-alone blood test created by the team yields results in just five to seven minutes. They claim it is also more accurate and cost-effective than current methods.
Although initially designed for rapid diagnostic use in a clinical setting, the test could be adapted into a hand-held device for use by first responders in the field or even for personal use at home. Central to the invention is a small chip featuring a groundbreaking nanostructured surface for blood testing. The chip's "metasurface" amplifies electric and magnetic signals during Raman spectroscopy analysis, enabling heart attack biomarkers to be detected in seconds, even at ultra-low concentrations. This tool is sensitive enough to identify heart attack biomarkers that might not be detected by existing tests or might only be recognized later in the course of an attack. While primarily intended for diagnosing heart attacks, the researchers believe the tool could also be modified to detect cancer and infectious diseases. The team plans to refine the blood test further and undertake larger clinical trials in the future.
"We're talking about speed, we're talking about accuracy, and we're talking of the ability to perform measurements outside of a hospital," said Ishan Barman, Professor, Department of Mechanical Engineering. "In the future, we hope this could be made into a hand-held instrument like a Star Trek tricorder, where you have a drop of blood and then, voilà, in a few seconds you have detection."
Latest Technology News
- AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
- AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
- AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
- Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
- Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
- Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
- AI Algorithm Assesses Progressive Decline in Kidney Function
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
New Serum Marker-Editing Strategy to Improve Diagnosis of Neurological Diseases
Tracking gene-expression changes in the brain is crucial for understanding neurological diseases, yet current monitoring tools are invasive or unable to capture subtle activity shifts over time.... Read more
World’s First Genetic Type 1 Diabetes Risk Test Enables Early Detection
Type 1 Diabetes (T1D) affects more than eight million people worldwide, with numbers expected to rise sharply. While most cases are genetically driven, only one in ten patients has a family history, making... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channelRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channelAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read more
AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
Complex digital biopsy images that typically take an expert pathologist up to 20 minutes to assess can now be analyzed in about one minute using a new artificial intelligence (AI) tool. The technology... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








