Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours
|
By LabMedica International staff writers Posted on 26 Jul 2024 |

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death. It holds a 30-day mortality rate of over 30%, which is more than double that of heart attacks. Prompt administration of the correct antibiotic is vital for reducing this high mortality rate. To determine the best treatment, three independent tests are typically required: blood culture to confirm the infection, pathogen identification to pinpoint the specific infecting organism, and antimicrobial susceptibility testing (AST) to identify the most effective antibiotic. Currently, obtaining AST results, which are crucial for selecting the appropriate antibiotic, can take more than 2-3 days. Delays in these results contribute to inappropriate antibiotic use, accelerating the emergence of multidrug-resistant 'superbugs.' While advancements have shortened the timeframe needed for AST, no global progress has been made in reducing the time required for the blood culture process, which is the most time-consuming. Now, an ultra-rapid AST method that bypasses the need for traditional blood culture has demonstrated the potential to reduce the turnaround time of reporting drug susceptibility profiles by more than 40–60 hours compared with hospital AST workflows.
The ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) developed by researchers from the Department of Electrical and Computer Engineering at Seoul National University (Seoul, Korea), in collaboration with QuantaMatrix Inc. (Seoul, Korea), is the world's first to bypass the lengthy blood culture phase, allowing for the completion of all necessary tests for an effective antibiotic regimen within a single day. The uRAST technology employs nanoparticles coated with immune proteins that specifically bind to pathogens, enabling the direct isolation of these pathogens from a patient's blood. The researchers have also integrated new technologies that rapidly conduct pathogen identification and AST, considerably speeding up the testing process. In a clinical trial involving 190 patients suspected of having sepsis, uRAST delivered complete test results within just 13 hours, slashing 40-60 hours off the time required by traditional diagnostic methods. Moreover, uRAST achieved accuracy levels that meet FDA standards.
Another significant aspect of this research published on July 25th in Nature is the integration of fully automated technology that consolidates all necessary sepsis diagnostics into one streamlined process. Traditionally, each test is performed separately and manually, causing delays—particularly outside of normal laboratory operating hours. For instance, if a blood culture is completed after-hours, further testing must wait until the next day, thus missing the critical window for effective sepsis intervention. This research demonstrated the potential for continuous, 24/7 diagnostic operations by automating the entire sequence of necessary tests for sepsis, significantly improving the prospects for timely patient care.
Related Links:
Seoul National University
QuantaMatrix Inc.
Latest Microbiology News
- Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
- Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
- 15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
- Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People
- Saliva Test Detects Implant-Related Microbial Risks
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance
- Early Detection of Gut Microbiota Metabolite Linked to Atherosclerosis Could Revolutionize Diagnosis
- Viral Load Tests Can Help Predict Mpox Severity
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
First-Of-Its-Kind Automated System Speeds Myeloma Diagnosis
More than 176,000 people are diagnosed with multiple myeloma worldwide each year, yet the current diagnostic pathway can be slow and uncertain, often relying on a highly subjective interpretation of test results.... Read more
Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention
Elevated levels of specific proteins in the blood can signal increased risk of mortality, according to new evidence showing that five proteins involved in cancer, inflammation, and cell regulation strongly... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read morePathology
view channel
AI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read more
AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
Complex digital biopsy images that typically take an expert pathologist up to 20 minutes to assess can now be analyzed in about one minute using a new artificial intelligence (AI) tool. The technology... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








