We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo ADLM 2025 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Test Predicts If Brain Tumor Is Likely to Grow Back

By LabMedica International staff writers
Posted on 27 Nov 2023
Image: The new test could change treatment for 1 in 3 patients with meningioma (Photo courtesy of UCSF)
Image: The new test could change treatment for 1 in 3 patients with meningioma (Photo courtesy of UCSF)

Meningioma, a brain tumor that originates in the membranes surrounding the brain, often goes unnoticed due to its slow growth. Patients typically become aware of their condition when neurological symptoms like numbness, vision impairment, or personality changes occur. Current treatment methods include surgery for tumor removal and radiation to prevent regrowth. The tumors are treated according to their categorization by the World Health Organization into different grades based on their severity. Typically, Grade 1 meningiomas don't receive radiation if they are fully removed surgically. However, about 20% of these cases see tumor recurrence. Patients with more aggressive Grade 2 and 3 tumors usually undergo radiation post-surgery, despite the potential for serious side effects like memory loss and cognitive decline. The need for radiation treatment, particularly for Grade 2 tumors, still remains questionable.

Now, a collaborative team from UC San Francisco (San Francisco, CA, USA) and Northwestern Medicine (Chicago, IL, USA), along with 10 other medical institutions, has discovered a highly effective method to guide treatment decisions for meningioma patients. This method involves analyzing gene expression patterns within the tumors. This new technique could change the treatment path for nearly one-third of meningioma patients. By examining tumor samples from 1,856 patients across the U.S., Europe, and Hong Kong, the researchers identified 34 genes whose expression patterns could predict tumor recurrence. Their findings suggest that only 20% of patients with low-grade tumors might need radiation, while 40% of those with higher-grade tumors might benefit from avoiding radiation. The next step for the research team involves validating this gene-expression testing approach in two upcoming clinical trials.

“There’s been a lot of controversy in the field in terms of who should receive radiotherapy and who shouldn’t,” said David Raleigh, MD, Ph.D., a radiation oncologist at the UCSF Brain Tumor Center. “Our biomarker takes the guessing game out of this and shows us which patients are likely to benefit from radiotherapy and which may get toxicity and possibly no benefit from radiation.”

“When to proceed with additional surgery, radiotherapy or simply to observe a small residual meningioma is not always clear,” added Stephen Magill, MD, PhD, assistant professor of neurological surgery at Northwestern University Feinberg School of Medicine. “This test adds information that can let us tailor our surgical and radiation approach to provide the best outcome for each patient and maximize both quality and quantity of life.”

Related Links:
UC San Francisco
Northwestern Medicine

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Celiac Disease Test
Anti-Gliadin IgG ELISA
New
Silver Member
Autoimmune Hepatitis Test
LKM-1-Ab ELISA

DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
PURITAN MEDICAL