We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Groundbreaking Diagnostic Technique Enables Faster and More Accurate Detection of Neurodegenerative Diseases

By LabMedica International staff writers
Posted on 11 May 2023
Print article
Image: New technique could enable rapid detection of neurodegenerative diseases (Photo courtesy of University of Minnesota)
Image: New technique could enable rapid detection of neurodegenerative diseases (Photo courtesy of University of Minnesota)

Neurodegenerative conditions like Alzheimer's, Parkinson's, mad cow disease, and chronic wasting disease (CWD) all exhibit a shared characteristic: the accumulation of misfolded proteins within the central nervous system. Identifying these misfolded proteins is vital for understanding and diagnosing these diseases. However, existing diagnostic techniques, such as enzyme-linked immunosorbent assay and immunohistochemistry, may be costly, labor-intensive, and restrictive in terms of antibody specificity. Now, scientists have designed an innovative diagnostic procedure that enables quicker and more precise detection of neurodegenerative diseases, offering prospects for earlier intervention and management.

The technique, called Nano-QuIC (Nanoparticle-enhanced Quaking-Induced Conversion), has been devised by researchers at University of Minnesota (Minneapolis, MN, USA) and significantly improves the performance of advanced protein-misfolding detection methods like the NIH Rocky Mountain Laboratories' Real-Time Quaking-Induced Conversion (RT-QuIC) assay. With Nano-QuIC, the detection times are drastically cut down from around 14 hours to a mere four hours, while the sensitivity is heightened tenfold. This rapid and highly precise detection technique is particularly critical for comprehending and controlling the transmission of CWD, a disease rampant among deer in North America, Scandinavia, and South Korea. The scientists are hopeful that Nano-QuIC could eventually be instrumental in detecting protein-misfolding diseases in humans, particularly Parkinson's, Creutzfeldt-Jakob Disease, Alzheimer's, and ALS.

“This research mainly focuses on CWD in deer, but ultimately our goal is to expand the technology for a broad spectrum of neurodegenerative diseases, Alzheimer’s and Parkinson’s being the two main targets,” said Sang-Hyun Oh, senior co-author of the paper and a professor in the College of Science and Engineering. “Our vision is to develop ultra-sensitive, powerful diagnostic techniques for a variety of neurodegenerative diseases so that we can detect biomarkers early on, perhaps allowing more time for the deployment of therapeutic agents that can slow down the disease progression. We want to help improve the lives of millions of people affected by neurodegenerative diseases.”

“Testing for these neurodegenerative diseases in both animals and humans has been a major challenge to our society for decades,” said Peter Larsen, senior co-author of the paper and an assistant professor in the College of Veterinary Medicine. “What we’re seeing now is this really exciting time when new, next generation diagnostic tests are emerging for these diseases. The impact that our research has is that it’s greatly improving upon those next generation tests, it’s making them more sensitive and it’s making them more accessible.”

Related Links:
University of Minnesota 

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chagas Disease Test
LIAISON Chagas
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more