We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

DNA Testing Assessed in Childhood Sickle-Cell Anemia Diagnosis

By LabMedica International staff writers
Posted on 21 Jul 2022
Print article
Image: Blood film of a patient with sickle cell/β 0 thalassemia compound heterozygosity shows one sickle cell, boat-shaped cells, target cells, three nucleated red cells, anisocytosis, poikilocytosis (Ke Xu, MD)
Image: Blood film of a patient with sickle cell/β 0 thalassemia compound heterozygosity shows one sickle cell, boat-shaped cells, target cells, three nucleated red cells, anisocytosis, poikilocytosis (Ke Xu, MD)

Sickle-cell disease (SCD) is the most common genetic disorder worldwide. SCD patients are homozygous for a recurrent mutation in the HBB-gene resulting in the substitution of a glutamic acid residue with a valine amino acid at position 6 of the beta globin protein (E6V).

The mutated protein, known as HbS, has a different electrical charge, which is exploited for the distinction of HbS from HbA by electrophoresis. The term SCD refers to all different genotypes that cause characteristic clinical syndrome, whereas sickle-cell anemia (SCA), the most prevalent form of SCD, refers to the homozygous form of SS, and the heterozygous compound forms such as S/β-thalassemia, SC disease refer to SCD.

Molecular Geneticists at the KU Leuven and University Hospitals Leuven (Leuven, Belgium) collaborating with their colleagues at the University of Kinshasa (Kinshasa, Democratic Republic of Congo) conducted a cross-sectional study from November 2016 to end October 2017 and 160 patients were included. The diagnosis in these patients was made by clinical suspicion associated with a positive Emmel test, occasionally people received hemoglobin electrophoresis and/or hemoglobin isoelectrofocusing.

For each patient, the team collected blood in two 4 mL EDTA tubes. They obtained a full blood cells count (red blood cells (RBC), white blood cells (WBC), platelets and reticulocytes). Biochemical analyses included lactate dehydrogenase (LDH), bilirubin, serum creatinine, aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Hemoglobin electrophoresis was performed using the automated Minicap (Sebia, Norcross, GA, USA). DNA was extracted by the salting out method, and mutation analysis for the SCA mutation (E6V) was performed. Mutation analysis of the β-globin gene was accomplished by resequencing the coding exons and by Multiplex Ligation-dependent Probe Amplification (MLPA), in patients suspected for compound form of SCD Sβ-thalassemia.

The investigators reported that hemoglobin capillary electrophoresis suggested that 136 (85%) were homozygote SS, 13 (8.1%) were heterozygote (AS), and 11 (6.9%) were homozygote normal (AA). DNA testing confirmed these electrophoresis findings, with the exception of four patients, two AS in electrophoresis were found SS due to recent transfusion, and two SS in electrophoresis were found AS because they have compound heterozygous form S/β 0-thalassemia. The diagnosis of SCA was therefore wrongly ascertained with Emmel test in 15% of patients.

The authors concluded that their study revealed a high proportion of wrongly diagnosed SCA patients in a rural environment in Central Africa, and underlines the importance of a DNA test in addition to Hb electrophoresis in helping to clarify the diagnosis of SCA. Improving the skills of healthcare professionals in the clinical recognition of SCA in children remains a crucial step in the management of SCA, especially in rural area. The study was published on July 12, 2022 in the Journal of Clinical Laboratory Analysis.

Related Links:
KU Leuven and University Hospitals Leuven 
University of Kinshasa 
Sebia 

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Piezoelectric Micropump
Disc Pump
New
Immunofluorescence Analyzer
MPQuanti

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.