We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Combining RDTs Determines Dengue Immune Status

By LabMedica International staff writers
Posted on 18 May 2022
Print article
Image: The Panbio Dengue IgM Capture ELISA is used to detect IgM antibodies to dengue antigen in serum as an aid to clinical laboratory diagnosis of patients with clinical symptoms consistent with dengue fever (Photo courtesy of Abbott)
Image: The Panbio Dengue IgM Capture ELISA is used to detect IgM antibodies to dengue antigen in serum as an aid to clinical laboratory diagnosis of patients with clinical symptoms consistent with dengue fever (Photo courtesy of Abbott)

Dengue is an emerging arboviral infectious disease (DENV), transmitted through the bite of an Aedes mosquito that burdens much of the urbanized tropical and subtropical world. Current dengue diagnostics are primarily concerned with capturing active infections, thus no such method exists for determining primary or post-primary DENV infections, at the point of care.

By assaying for changes in both DENV IgM and IgG antibodies, a rise in IgM titers coupled with high and low convalescent IgM: IgG ratios indicate active primary and secondary infections, respectively. Scientists have investigated how combining different rapid diagnostic tests (RDTs) can be used to accurately determine the primary and post-primary DENV immune status of reporting patients during diagnosis.

A team of scientist specializing in tropical medicine and led by those at the London School of Hygiene and Tropical Medicine (London, UK) collected serum from cross-sectional surveys of acute suspected dengue patients in Indonesia (N:200) and Vietnam (N: 1,217) and were assayed using dengue laboratory assays and RDTs. The team used logistic regression modeling, and determined the probability of being DENV NS1, IgM and IgG RDT positive according to corresponding laboratory viremia, IgM and IgG ELISA metrics.

Samples were assayed for the presence of DENV1-4 viremia using the CDC fourplex, real-time polymerase chain reaction (RT-PCR) test. The presence of DENV IgM and IgG antibodies was performed using Panbio capture ELISAs (Abbott, East Princeton, NJ, USA). Assays detect IgM/G antibodies specific to all serotypes and provide plate-calibrated titer outputs termed ‘panbio units’. Another RDTs used in the study were DENV NS1 RDT (Bio-Rad, Hercules, CA ,USA). Among samples from Indonesia, patient serum samples were tested for DENV NS1 using both Abbott’s NS1 capture ELISAs) and NS1 RDTs (SD Biosensor, Yeongtong-gu, Republic of Korea).

The investigators reported that combining NS1, IgM and IgG RDTs captured 94.6% (52/55) and 95.4% (104/109) of laboratory-confirmed primary and post-primary DENV cases, respectively, during the first 5 days of fever. Laboratory test predicted, and actual, RDT outcomes had high agreement (79.5% (159/200)). Among patients from the Philippines, different combinations of estimated RDT outcomes were indicative of post-primary and primary immune status. Overall, IgG RDT positive results were confirmatory of post-primary infections. In contrast, IgG RDT negative results were suggestive of both primary and post-primary infections on days 1–2 of fever, yet were confirmatory of primary infections on days 3–5 of fever.

The authors concluded that they had described methods for estimating the primary and post-primary immune status of dengue patients at the point of care, using a combination of simple-to-use rapid diagnostic tests. Using all three NS1, IgM and IgG RDTs, they demonstrated how at certain stages of infection health care workers and surveillance operations could confidently determine types of dengue infections. The study was published on May 4, 2022 in the journal PLOS Neglected Tropical Diseases.

Related Links:
London School of Hygiene and Tropical Medicine 
Abbott
Bio-Rad 
SD Biosensor 

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
H.pylori Test
Humasis H.pylori Card
New
TORCH Infections Test
TORCH Panel

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.