Protein Biomarker Blood Test Accurately Detects Alzheimer’s Disease
By LabMedica International staff writers Posted on 07 Jul 2021 |

Image: The proximity extension assay identified 19 plasma hub proteins (indicated as yellow dots in the figure) in AD patients, which were irregular compared to healthy people (Photo courtesy of Hong Kong University of Science and Technology)
A 19-protein biomarker panel distinguished Alzheimer’s disease (AD) patients from healthy individuals with greater than 96% accuracy and differentiated among the early, intermediate, and late stages of AD while monitoring the progression of the disease.
To capitalize on results obtained by studies showing the potential of blood proteins as candidate biomarkers for AD, investigators at Hong Kong University of Science and Technology (China) and their colleagues at University College London (United Kingdom) systematically profiled the plasma proteome to identify novel AD blood biomarkers and develop a high-performance, blood-based test for AD.
To do this, they used a proximity extension assay technique to quantify 1160 plasma proteins in samples obtained from a Hong Kong Chinese cohort. Proximity extension assay (PEA) is a direct one-step protein quantification method using a pair of DNA oligonucleotides linked to antibodies against the target molecule. It requires polyclonal or two monoclonal antibodies that bind to target epitopes close enough to form a DNA duplex which is quantified by real-time PCR.
The results of the PEA analysis identified 429 proteins that were dysregulated in the plasma of AD patients. The investigators selected 19 "hub proteins" representative of the AD plasma protein profile, which were used to form the basis of a scoring system that accurately classified clinical AD (as characterized by the presence of amyloid, tau, phosphorylated tau, and neurodegeneration).
In addition to distinguishing AD patients from healthy individuals with more than 96% accuracy, the system could also differentiate among the early, intermediate, and late stages of AD and be used to monitor the progression of the disease over time.
"With the advancement of ultrasensitive blood-based protein detection technology, we have developed a simple, noninvasive, and accurate diagnostic solution for AD, which will greatly facilitate population-scale screening and staging of the disease," said senior author Dr. Nancy Ip, professor of life science at Hong Kong University of Science and Technology.
The plasma protein screening method for detection of Alzheimer’s disease was described in the May 25, 2021, online edition of Alzheimer's & Dementia: The Journal of the Alzheimer's Association.
Related Links:
Hong Kong University of Science and Technology
University College London
To capitalize on results obtained by studies showing the potential of blood proteins as candidate biomarkers for AD, investigators at Hong Kong University of Science and Technology (China) and their colleagues at University College London (United Kingdom) systematically profiled the plasma proteome to identify novel AD blood biomarkers and develop a high-performance, blood-based test for AD.
To do this, they used a proximity extension assay technique to quantify 1160 plasma proteins in samples obtained from a Hong Kong Chinese cohort. Proximity extension assay (PEA) is a direct one-step protein quantification method using a pair of DNA oligonucleotides linked to antibodies against the target molecule. It requires polyclonal or two monoclonal antibodies that bind to target epitopes close enough to form a DNA duplex which is quantified by real-time PCR.
The results of the PEA analysis identified 429 proteins that were dysregulated in the plasma of AD patients. The investigators selected 19 "hub proteins" representative of the AD plasma protein profile, which were used to form the basis of a scoring system that accurately classified clinical AD (as characterized by the presence of amyloid, tau, phosphorylated tau, and neurodegeneration).
In addition to distinguishing AD patients from healthy individuals with more than 96% accuracy, the system could also differentiate among the early, intermediate, and late stages of AD and be used to monitor the progression of the disease over time.
"With the advancement of ultrasensitive blood-based protein detection technology, we have developed a simple, noninvasive, and accurate diagnostic solution for AD, which will greatly facilitate population-scale screening and staging of the disease," said senior author Dr. Nancy Ip, professor of life science at Hong Kong University of Science and Technology.
The plasma protein screening method for detection of Alzheimer’s disease was described in the May 25, 2021, online edition of Alzheimer's & Dementia: The Journal of the Alzheimer's Association.
Related Links:
Hong Kong University of Science and Technology
University College London
Latest Molecular Diagnostics News
- First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis
- New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests
- Biomarker Discovery Paves Way for Blood Tests to Detect and Treat Osteoarthritis
- Liquid Biopsy Assay Detects Recurrence in CRC Patients Prior to Imaging
- Ultra Fast Synovial Fluid Test Diagnoses Osteoarthritis and Rheumatoid Arthritis In 10 Minutes
- Genetic-Based Tool Predicts Survival Outcomes of Pancreatic Cancer Patients
- Urine Test Diagnoses Early-Stage Prostate Cancer
- New Genetic Tool Analyzes Umbilical Cord Blood to Predict Future Disease
- Spinal Fluid Biomarker for Parkinson’s Disease Offers Early and Accurate Diagnosis
- Revolutionary Blood Test Detects 30 Different Types of Cancers with 98% Accuracy
- Simple Blood Test Better Predicts Heart Disease Risk
- New Blood Test Detects 12 Common Cancers Before Symptoms Appear
- Blood Test Could Predict Relapse of Autoimmune Blood Vessel Disease
- First-of-its-Kind Blood Test Detects Trauma-Related Diseases
- Key Gene Identified in Common Heart Disease Unlocks Life-Saving Diagnostic Potential
- Cheap Cell-Free DNA Based Test Accurately Predicts Preterm Birth
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read more
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more