An Ultrasensitive Assay for Measurement of Levels of Cathepsin B in the Blood
By LabMedica International staff writers Posted on 21 Apr 2021 |

Image: Representation of the molecular structure of the cathepsin B (catB) protein (Photo courtesy of Wikimedia Commons)
A novel digital enzyme-linked immunosorbent assay (ELISA) has been developed for the differential detection of cathepsin B from samples of serum or plasma.
Cathepsin B (catB) is a lysosomal cysteine protease expressed in various cells and organs, where it plays a role in protein degradation and turnover. Under pathological conditions, catB expression becomes upregulated in a variety of diseases including metastatic cancers, infections, traumatic brain injury, and neurological diseases. This upregulation is often associated with increased extracellular secretion via active or passive mechanisms. As such, the catB protein content is elevated above basal levels where it may have utility as a biofluid-based marker of diseases, injury, or trauma.
While biofluid samples such as plasma and serum contain catB, it is often difficult to obtain accurate measurements of the protein due to background interference and high variance, which limit the usefulness of catB as a peripheral biomarker. Thus, techniques for ultrasensitive protein detection that require low volumes of sample are necessary.
In this regard, investigators at Walter Reed Army Institute for Research (Silver Spring, MD, USA) developed a digital ELISA for differential detection of catB within less than five microliters of serum and plasma using the single molecule array (SiMoA) platform, which offers 1000-times more sensitivity and vastly reduced variance compared to colorimetric tests.
Results revealed that in buffer solution, the limit of detection (LoD) was between 1.56 and 8.47 picograms per milliliter depending on whether a two-step or three-step assay was used. After correcting for endogenous levels, the estimated LoD was approximately 4.7 picograms per milliliter in serum or plasma with the two-step assay. The lower limit of quantitation was about 2.3 picograms per milliliter in buffer and about 9.4 picograms per milliliter in serum or plasma, indicting the ability to measure small changes above endogenous levels within blood samples.
"Although cathepsin can be abundant in some tissues, accurate measurement in blood has been a challenge, especially if changes are expected to be small or sample is limited," said first author Dr. Bharani Thangavelu, a researcher in the brain trauma neuroprotection branch at the Walter Reed Army Institute for Research. "Our strategy uses an ultrasensitive technique to improve cathepsin B detection from small volumes of blood with little to no noise or impact from interfering substances."
The ultrasensitive ELISA for cathepsin B was described in the March 31, 2021, online edition of the journal ACS Omega.
Related Links:
Walter Reed Army Institute for Research
Cathepsin B (catB) is a lysosomal cysteine protease expressed in various cells and organs, where it plays a role in protein degradation and turnover. Under pathological conditions, catB expression becomes upregulated in a variety of diseases including metastatic cancers, infections, traumatic brain injury, and neurological diseases. This upregulation is often associated with increased extracellular secretion via active or passive mechanisms. As such, the catB protein content is elevated above basal levels where it may have utility as a biofluid-based marker of diseases, injury, or trauma.
While biofluid samples such as plasma and serum contain catB, it is often difficult to obtain accurate measurements of the protein due to background interference and high variance, which limit the usefulness of catB as a peripheral biomarker. Thus, techniques for ultrasensitive protein detection that require low volumes of sample are necessary.
In this regard, investigators at Walter Reed Army Institute for Research (Silver Spring, MD, USA) developed a digital ELISA for differential detection of catB within less than five microliters of serum and plasma using the single molecule array (SiMoA) platform, which offers 1000-times more sensitivity and vastly reduced variance compared to colorimetric tests.
Results revealed that in buffer solution, the limit of detection (LoD) was between 1.56 and 8.47 picograms per milliliter depending on whether a two-step or three-step assay was used. After correcting for endogenous levels, the estimated LoD was approximately 4.7 picograms per milliliter in serum or plasma with the two-step assay. The lower limit of quantitation was about 2.3 picograms per milliliter in buffer and about 9.4 picograms per milliliter in serum or plasma, indicting the ability to measure small changes above endogenous levels within blood samples.
"Although cathepsin can be abundant in some tissues, accurate measurement in blood has been a challenge, especially if changes are expected to be small or sample is limited," said first author Dr. Bharani Thangavelu, a researcher in the brain trauma neuroprotection branch at the Walter Reed Army Institute for Research. "Our strategy uses an ultrasensitive technique to improve cathepsin B detection from small volumes of blood with little to no noise or impact from interfering substances."
The ultrasensitive ELISA for cathepsin B was described in the March 31, 2021, online edition of the journal ACS Omega.
Related Links:
Walter Reed Army Institute for Research
Latest Molecular Diagnostics News
- Genetic Test Could Predict Poor Outcomes in Lung Transplant Patients
- Breakthrough Blood Test Enables Early Pancreatic Cancer Detection
- Genomic Testing in NICU Reduces Missed Diagnoses
- New Genetic Test Improves Diabetes Prediction and Classification
- New Blood Test for Leukemia Risk Detection Could Replace Bone Marrow Sampling
- Blood Test Detects Preeclampsia Risk Months Before Symptoms Appear
- mNGS CSF Test Outperforms Traditional Microbiological Testing for Infectious Diseases
- Point-Of-Care Test to Transform Early-Stage Cervical Cancer Diagnosis
- PET/ctDNA-Guided Approach Helps Determine Lymphoma Treatment
- Next-Generation 'Agnostic Diagnostics' to Detect Respiratory Viruses at POC
- First-Ever Test of Cure for Chagas Disease Determines Treatment Effectiveness
- Capsule Sponge Test Could Replace Endoscopies for Monitoring Esophageal Cancer Risk
- Nasal Swab Test Offers Simpler and Less Costly Virus Screening in High-Risk Settings
- DNA Test Accurately Predicts Resistance to Common Chemotherapy Treatments
- Umbilical Cord Blood Test Can Detect Early Sepsis in Preterm Infants
- Simple Blood Test Predicts Cognitive Decline in Alzheimer's Patients
Channels
Clinical Chemistry
view channel
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read more
Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
Opioid drugs such as fentanyl, morphine, and oxycodone are the primary substances associated with overdose cases in the United States. Standard drug screening procedures typically involve collecting blood,... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
Current tuberculosis (TB) tests face major limitations when it comes to accurately diagnosing the infection in individuals living with HIV. HIV, a frequent co-infection with TB, complicates detection by... Read more
Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
Critically ill patients in medical intensive care units (MICUs) often suffer from conditions such as acute respiratory distress syndrome (ARDS) or sepsis, which are linked to reduced diversity of gut microbiota... Read more
Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
Urinary tract infections (UTIs) represent a massive burden on patients and healthcare systems. There are over 400 million UTI cases globally each year, of which around 90% are in women. Fast and accurate... Read more
POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
Diagnosing mucormycosis—an aggressive and often deadly fungal infection—remains a major challenge due to the disease’s rapid progression and the lack of fast, accurate diagnostic tools. The problem became... Read morePathology
view channel
AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis
Pancreatic cancer poses a major global health threat due to its high mortality rate, with 467,409 deaths and 510,992 new cases reported worldwide in 2022. Often referred to as the "king" of all cancers,... Read more
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read more
Saliva-Based Testing to Enable Early Detection of Cancer, Heart Disease or Parkinson’s
Saliva is one of the most accessible biological fluids, yet it remains underutilized in clinical practice. While saliva samples are used to perform genetic tests to determine, for example, paternity, the... Read moreTechnology
view channel
New Miniature Device to Transform Testing of Blood Cancer Treatments
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for blood cancers like leukemia, offering hope to patients when other treatments fail. However, despite its promise,... Read more
Biosensing Advancement to Enable Early Detection of Disease Biomarkers at POC
Traditional medical diagnostics often require clinical samples to be sent off-site, leading to time-consuming and costly processes. Point-of-care diagnostics offer a more efficient alternative, allowing... Read moreIndustry
view channel
AMP Releases Best Practice Recommendations to Guide Clinical Laboratories Offering HRD Testing
Homologous recombination deficiency (HRD) testing identifies tumors that are unable to effectively repair DNA damage through the homologous recombination repair pathway. This deficiency is often linked... Read more