Sensitive PCR Test Detects Early Stage Lyme Disease
By LabMedica International staff writers Posted on 19 Apr 2021 |
![Image: Darkfield photomicrograph (magnified 400x) showing the presence of the spirochaete Borrelia burgdorferi, which is the pathogen that causes Lyme disease (Photo courtesy of [U.S.] Centers for Disease Control and Prevention via Wikimedia Commons) Image: Darkfield photomicrograph (magnified 400x) showing the presence of the spirochaete Borrelia burgdorferi, which is the pathogen that causes Lyme disease (Photo courtesy of [U.S.] Centers for Disease Control and Prevention via Wikimedia Commons)](https://globetechcdn.com/mobile_labmedica/images/stories/articles/article_images/2021-04-19/GMS-027B.jpg)
Image: Darkfield photomicrograph (magnified 400x) showing the presence of the spirochaete Borrelia burgdorferi, which is the pathogen that causes Lyme disease (Photo courtesy of [U.S.] Centers for Disease Control and Prevention via Wikimedia Commons)
A highly sensitive blood test detects the bacteria that causes Lyme disease in early stages of the infection, when treatment can prevent the development of serious or fatal consequences of the chronic disease.
The successful treatment of Lyme disease (LD) is contingent on accurate diagnosis. However, current laboratory detection assays lack sensitivity in the early stages of the disease. Since delayed diagnosis of LD can result in high healthcare costs and great suffering to the patient, new highly sensitive tests are needed.
In this regard, investigators at the University of Leicester (United Kingdom) developed an internally controlled quantitative PCR test that targeted the multicopy terminase large subunit (terL) gene encoded by prophages that are only found in LD-causing bacteria. A prophage is a bacteriophage genome inserted and integrated into the circular bacterial DNA chromosome or present as an extrachromosomal plasmid. This is a latent form of a phage, in which the viral genes are present in the bacterium without causing disruption of the bacterial cell.
The newly developed Ter-qPCR test was based on the polymerase chain reaction (PCR), which amplifies small amounts of specific genetic material so that it can be detected. To increase the sensitivity of the test for detection of Borrelia burgdorferi, the causative agents of Lyme disease, the investigators adapted it to be specific for the prophage terL gene. The terL protein helps phages package their DNA.
The diagnostic potential of the Ter-qPCR test was evaluated using a set of blood and serum samples collected from healthy volunteers and individuals who were clinically diagnosed with Lyme disease. Results revealed that the detection limit of the Ter-qPCR test was estimated to be 22 copies, the equivalent of one bacterial cell in a bacteria spiked blood sample. Furthermore, significant quantitative differences were observed in terms of the amount of terL detected in healthy individuals and patients with either early or late Lyme disease.
"Early diagnosis of Lyme disease is absolutely vital in reducing suffering, because early Lyme can be treated, but late Lyme is very difficult to treat," said first author Dr. Jinyu Shan, a researcher in the department of respiratory sciences at the University of Leicester. "Current tests cannot typically detect the low numbers of bacteria in early-stage patient blood samples. Our goal was to design a highly sensitive test to help doctors to identify Lyme disease as early as possible. We are currently working with a commercial partner, and investigating regulatory issues and the potential for a clinical trial for this technology."
The Ter-qPCR test was described in the March 15, 2021, online edition of the journal Frontiers in Microbiology.
Related Links:
University of Leicester
The successful treatment of Lyme disease (LD) is contingent on accurate diagnosis. However, current laboratory detection assays lack sensitivity in the early stages of the disease. Since delayed diagnosis of LD can result in high healthcare costs and great suffering to the patient, new highly sensitive tests are needed.
In this regard, investigators at the University of Leicester (United Kingdom) developed an internally controlled quantitative PCR test that targeted the multicopy terminase large subunit (terL) gene encoded by prophages that are only found in LD-causing bacteria. A prophage is a bacteriophage genome inserted and integrated into the circular bacterial DNA chromosome or present as an extrachromosomal plasmid. This is a latent form of a phage, in which the viral genes are present in the bacterium without causing disruption of the bacterial cell.
The newly developed Ter-qPCR test was based on the polymerase chain reaction (PCR), which amplifies small amounts of specific genetic material so that it can be detected. To increase the sensitivity of the test for detection of Borrelia burgdorferi, the causative agents of Lyme disease, the investigators adapted it to be specific for the prophage terL gene. The terL protein helps phages package their DNA.
The diagnostic potential of the Ter-qPCR test was evaluated using a set of blood and serum samples collected from healthy volunteers and individuals who were clinically diagnosed with Lyme disease. Results revealed that the detection limit of the Ter-qPCR test was estimated to be 22 copies, the equivalent of one bacterial cell in a bacteria spiked blood sample. Furthermore, significant quantitative differences were observed in terms of the amount of terL detected in healthy individuals and patients with either early or late Lyme disease.
"Early diagnosis of Lyme disease is absolutely vital in reducing suffering, because early Lyme can be treated, but late Lyme is very difficult to treat," said first author Dr. Jinyu Shan, a researcher in the department of respiratory sciences at the University of Leicester. "Current tests cannot typically detect the low numbers of bacteria in early-stage patient blood samples. Our goal was to design a highly sensitive test to help doctors to identify Lyme disease as early as possible. We are currently working with a commercial partner, and investigating regulatory issues and the potential for a clinical trial for this technology."
The Ter-qPCR test was described in the March 15, 2021, online edition of the journal Frontiers in Microbiology.
Related Links:
University of Leicester
Latest Molecular Diagnostics News
- RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia
- New Technique for Measuring Acidic Glycan in Blood Simplifies Schizophrenia Diagnosis
- Injury Molecular Fingerprint Enables Real-Time Diagnostics for On-Site Treatment
- Blood Test Could Predict Likelihood of Breast Cancer Spreading to The Bone
- New Infectious Disease Analytics Platform Speeds Up Clinical Decision-Making at POC
- Genetic Test Could Predict Poor Outcomes in Lung Transplant Patients
- Breakthrough Blood Test Enables Early Pancreatic Cancer Detection
- Genomic Testing in NICU Reduces Missed Diagnoses
- New Genetic Test Improves Diabetes Prediction and Classification
- New Blood Test for Leukemia Risk Detection Could Replace Bone Marrow Sampling
- Blood Test Detects Preeclampsia Risk Months Before Symptoms Appear
- mNGS CSF Test Outperforms Traditional Microbiological Testing for Infectious Diseases
- Point-Of-Care Test to Transform Early-Stage Cervical Cancer Diagnosis
- PET/ctDNA-Guided Approach Helps Determine Lymphoma Treatment
- Next-Generation 'Agnostic Diagnostics' to Detect Respiratory Viruses at POC
- First-Ever Test of Cure for Chagas Disease Determines Treatment Effectiveness
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
AI Performs Virtual Tissue Staining at Super-Resolution
Conventional histopathology, essential for diagnosing various diseases, typically involves chemically staining tissue samples to reveal cellular structures under a microscope. This process, known as “histochemical... Read more
AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis
Pancreatic cancer poses a major global health threat due to its high mortality rate, with 467,409 deaths and 510,992 new cases reported worldwide in 2022. Often referred to as the "king" of all cancers,... Read more
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read moreTechnology
view channel
Inexpensive DNA Coated Electrode Paves Way for Disposable Diagnostics
Many people around the world still lack access to affordable, easy-to-use diagnostics for diseases like cancer, HIV, and influenza. Conventional sensors, while accurate, often rely on expensive equipment... Read more
New Miniature Device to Transform Testing of Blood Cancer Treatments
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for blood cancers like leukemia, offering hope to patients when other treatments fail. However, despite its promise,... Read moreIndustry
view channel
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more