Panel of MicroRNAs Differentiates Uncomplicated and Severe Malaria in Children
By LabMedica International staff writers Posted on 25 Jan 2021 |

Image: Blood smear from a P. falciparum culture: several red blood cells have ring stages inside them while close to the center is a schizont and on the left a trophozoite (Photo courtesy of Wikimedia Commons)
MicroRNAs (miRNAs), which are rapidly released from damaged tissues into the host fluids, constitute a promising biomarker for the prognosis of severe malaria.
MiRNAs comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation. In addition to miRNAs playing an essential role in tumor development, dysregulation of certain miRNAs has been associated with many different diseases, such as dementia and cardiovascular conditions.
Investigators at the Barcelona Institute for Global Health (Spain) postulated that miRNA levels in plasma would be expressed differentially among children with severe and uncomplicated malaria due to parasite sequestration in vital organs of severely ill children. A characteristic of severe malaria is the sequestration of Plasmodium falciparum infected red blood cells in vital organs such as the lungs, kidneys, or brain. Resulting organ damage triggers the release of miRNAs into body fluids, including the blood.
To prove their hypothesis, the investigators used advanced sequencing techniques to identify miRNAs released by human brain endothelial cells growing in culture when the cultures were exposed to red blood cells infected by P. falciparum. They then applied next-generation sequencing to evaluate the differential expression of these miRNAs in severe malaria (SM) and in uncomplicated malaria (UM) in children living in Mozambique.
Results revealed that six miRNAs were associated with in vitro P. falciparum cytoadhesion, severity in children, and P. falciparum biomass. The six miRNAs were found to be elevated in children with severe malaria. One of the miRNAs was positively related to the amount of a parasite-derived protein HRP2 (histidine rich protein 2). Previous studies had found that the concentration of HRP2 could be used to quantify growth of the parasite in vitro and to define severe malaria in patients.
"We hypothesized that miRNA levels in plasma would be differently expressed in children with severe and uncomplicated malaria, due to parasite sequestration in vital organs," said senior author Dr. Alfredo Mayor, an associate research professor at the Barcelona Institute for Global Health."Our results indicate that the different pathological events in severe and uncomplicated malaria lead to differential expression of miRNAs in plasma. These miRNAs could be used as prognostic biomarkers of disease, but we need larger studies to validate this."
The malaria microRNA study was published in the February 2021 online edition of the journal Emerging Infectious Diseases.
Related Links:
Barcelona Institute for Global Health
MiRNAs comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation. In addition to miRNAs playing an essential role in tumor development, dysregulation of certain miRNAs has been associated with many different diseases, such as dementia and cardiovascular conditions.
Investigators at the Barcelona Institute for Global Health (Spain) postulated that miRNA levels in plasma would be expressed differentially among children with severe and uncomplicated malaria due to parasite sequestration in vital organs of severely ill children. A characteristic of severe malaria is the sequestration of Plasmodium falciparum infected red blood cells in vital organs such as the lungs, kidneys, or brain. Resulting organ damage triggers the release of miRNAs into body fluids, including the blood.
To prove their hypothesis, the investigators used advanced sequencing techniques to identify miRNAs released by human brain endothelial cells growing in culture when the cultures were exposed to red blood cells infected by P. falciparum. They then applied next-generation sequencing to evaluate the differential expression of these miRNAs in severe malaria (SM) and in uncomplicated malaria (UM) in children living in Mozambique.
Results revealed that six miRNAs were associated with in vitro P. falciparum cytoadhesion, severity in children, and P. falciparum biomass. The six miRNAs were found to be elevated in children with severe malaria. One of the miRNAs was positively related to the amount of a parasite-derived protein HRP2 (histidine rich protein 2). Previous studies had found that the concentration of HRP2 could be used to quantify growth of the parasite in vitro and to define severe malaria in patients.
"We hypothesized that miRNA levels in plasma would be differently expressed in children with severe and uncomplicated malaria, due to parasite sequestration in vital organs," said senior author Dr. Alfredo Mayor, an associate research professor at the Barcelona Institute for Global Health."Our results indicate that the different pathological events in severe and uncomplicated malaria lead to differential expression of miRNAs in plasma. These miRNAs could be used as prognostic biomarkers of disease, but we need larger studies to validate this."
The malaria microRNA study was published in the February 2021 online edition of the journal Emerging Infectious Diseases.
Related Links:
Barcelona Institute for Global Health
Latest Microbiology News
- Viral Load Tests Can Help Predict Mpox Severity
- Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
- Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
- Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
- Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
- POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
- Rapid Diagnostic Test Slashes Sepsis Mortality by 39%
- Blood Culture Assay Enhances Diagnostic Stewardship Through Targeted Panel Selection
- Real-Time Genome Sequencing Detects Dangerous Superbug Causing Hospital Infections
- Diagnostic Test Accurately Detects Colorectal Cancer by Identifying Microbial Signature in Gut Bacteria
- Rapid Bedside Test Predicts Sepsis with Over 90% Accuracy
- New Blood Test Detects Up to Five Infectious Diseases at POC
- Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
- New Test Diagnoses Bacterial Meningitis Quickly and Accurately
- Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Channels
Clinical Chemistry
view channel
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read more
Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
Opioid drugs such as fentanyl, morphine, and oxycodone are the primary substances associated with overdose cases in the United States. Standard drug screening procedures typically involve collecting blood,... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
AI Performs Virtual Tissue Staining at Super-Resolution
Conventional histopathology, essential for diagnosing various diseases, typically involves chemically staining tissue samples to reveal cellular structures under a microscope. This process, known as “histochemical... Read more
AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis
Pancreatic cancer poses a major global health threat due to its high mortality rate, with 467,409 deaths and 510,992 new cases reported worldwide in 2022. Often referred to as the "king" of all cancers,... Read more
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read moreTechnology
view channel
Inexpensive DNA Coated Electrode Paves Way for Disposable Diagnostics
Many people around the world still lack access to affordable, easy-to-use diagnostics for diseases like cancer, HIV, and influenza. Conventional sensors, while accurate, often rely on expensive equipment... Read more
New Miniature Device to Transform Testing of Blood Cancer Treatments
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for blood cancers like leukemia, offering hope to patients when other treatments fail. However, despite its promise,... Read moreIndustry
view channel
AMP Releases Best Practice Recommendations to Guide Clinical Laboratories Offering HRD Testing
Homologous recombination deficiency (HRD) testing identifies tumors that are unable to effectively repair DNA damage through the homologous recombination repair pathway. This deficiency is often linked... Read more