We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Single-Molecule Tethering Detects Nucleic Acids and Microorganisms

By LabMedica International staff writers
Posted on 29 Oct 2020
Print article
Image: The signal of SMOLT is generated by the displacement of micron-size beads tethered by DNA long-probes that are between 1 and 7 microns long. The molecular extension of thousands of DNA probes is determined with sub-micron precision using a robust, rapid and low-cost optical approach (Photo courtesy of Scanogen).
Image: The signal of SMOLT is generated by the displacement of micron-size beads tethered by DNA long-probes that are between 1 and 7 microns long. The molecular extension of thousands of DNA probes is determined with sub-micron precision using a robust, rapid and low-cost optical approach (Photo courtesy of Scanogen).
Detection of microbial nucleic acids in body fluids has become the preferred method for rapid diagnosis of many infectious diseases. However, culture-based diagnostics that are time-consuming remain the gold standard approach in certain cases, such as sepsis.

The polymerase chain reaction (PCR) has enabled a revolution in in vitro diagnostics due to its sensitivity and specificity. However, polymerase-based methodologies require complex sample preparation steps to remove polymerase inhibitors in certain specimen types, and relatively expensive reagents and instrumentation.

A team of scientists at the biotechnology company Scanogen (Windsor Mill, MD, USA) collected data from 200 tests run on normal samples spiked with known concentrations of pathogen. The team used a technology called single-molecule tethering (SMOLT) that generates a signal when micron-sized beads tethered by double-stranded DNA probes inside a capillary are displaced in the presence of a target pathogen.

Beads tethered by a probe can be differentiated from beads that are not specific to the target of interest because the long-probe tethered beads are displaced by a greater distance. The displacement is determined by processing images obtained with a low-magnification lens and a low-cost digital camera.

The team reported that SMOLT technology can detect RNA molecules in whole blood, urine, and sputum. The technology also detected Candida species and two bacterial species, Staphylococcus aureus and Pseudomonas aeruginosa, in whole blood. The limits of detection was between 1 and 3 colony forming unit per milliliter (CFU/mL), comparable to current PCR tests on the market. The technology also readily lends itself to multiplexing that would enable identification of up to 20 targets per test run.

The team showed that SMOLT detection of microbial ribosomal ribonucleic acid (rRNA) enables high sensitivity with a turnaround time from sample to results of 1.5 hours. They designed species-specific probes that targeted the rRNA of the two most prevalent sepsis-causing fungi, Candida albicans and Candida glabrata, as well as pan-fungal probes that targeted highly conserved regions in fungal rRNA using a local database of microbial and human rRNA sequences.

For clinical testing in a laboratory, the company envisions that its future customers will be able to stack testing modules on top of each other. An eight-module stack, with each module running tests for up to 20 pathogens, will cost about USD 50,000, Celedon said, adding that the price is significantly lower than the instruments with which it intends to complete.

Alfredo Celedon, the founder of Scanogen and CEO, said “The firm anticipates offering pricing to laboratories at between USD 20 and USD 50 per test, while competing multiplexed tests are priced at USD 200 or more per test. For clinical testing in a laboratory, the company envisions that its future customers will be able to stack testing modules on top of each other. The study was published on September 22, 2020 in the journal Nature Communications.

Related Links:
Scanogen


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Cytomegalovirus Test
NovaLisa Cytomegalovirus (CMV) IgG Test
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more