We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Methods Compared Classifying Intensity of Soil-Transmitted Helminth Infections

By LabMedica International staff writers
Posted on 23 Jul 2020
Print article
Image: The FECPAKG2 is an internet connected, image based diagnostic platform scientifically validated to conduct fecal egg count (FEC) tests (Photo courtesy of Techion).
Image: The FECPAKG2 is an internet connected, image based diagnostic platform scientifically validated to conduct fecal egg count (FEC) tests (Photo courtesy of Techion).
Soil-transmitted helminths (Ascaris lumbricoides, Trichuris trichiura) and the hookworms, Necator americanus and Ancylostoma duodenale affect one quarter of the world population, and are responsible for the loss of more than three million disability-adjusted life years (DALYs).

There are a variety of novel microscopy and DNA-based methods to identify soil-transmitted helminths, but it remains unclear whether applying current World Health Organization (WHO) thresholds on to these methods allows for a reliable classification of moderate-to-heavy intensity (M&HI) infections.

An international team of scientists led by those at Ghent University (Merelbeke, Belgium) defined method-specific thresholds and verified whether they increased the correct classification of M&HI infections in a multi-countries study. They evaluated both WHO and method-specific thresholds for classifying the M&HI infections for novel microscopic methods: McMaster egg counting technique, FECPAKG2 (Techion, Aberystwyth, UK), and Mini-FLOTAC (Federico II University of Naples, Naples, Italy) and DNA-based (qPCR) diagnostic methods (Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands). The samples were also analyzed by Kato-Katz method as the reference method.

The team applied the WHO thresholds, the new microscopic methods mainly misclassified M&HI as low intensity, and to a lesser extent low intensity infection as M&HI. For FECPAKG2, applying the method-specific thresholds significantly improved the agreement for Ascaris (moderate → substantial), Trichuris and hookworms (fair → moderate). For Mini-FLOTAC, a significantly improved agreement was observed for hookworms only (fair → moderate). For the other STHs, the agreement was almost perfect and remained unchanged. For McMaster, the method-specific thresholds revealed a fair to a substantial agreement, but did not significantly improve the agreement. For qPCR, the method-specific thresholds based on genome equivalents per mL of DNA moderately agreed with the reference method for hookworms and Trichuris infections. For Ascaris, there was a substantial agreement.

The authors concluded that their results indicated that method-specific thresholds improved the classification of M&HI infections, but they stressed that validation studies are required before they can be recommended for general use in assessing M&HI infections in programmatic settings. The study also highlights the need (i) to agree on an absolute universal unit for qPCR, (ii) to align the evaluation of diagnostic methods with current STH program goals, and (iii) to define minimal and ideal (optimistic) criteria that diagnostic methods should meet in order to assess M&HI infections reliably. The study was published on July 2, 2020 in the journal PLOS Neglected Tropical Diseases.

Related Links:
Ghent University
Techion
Federico II University of Naples
Elisabeth-Tweesteden Hospital


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA
New
Ultrasonic Cleaner
UC 300 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more