Streamlined Assay Improves Prenatal Detection of Alpha-Thalassemia
By LabMedica International staff writers Posted on 09 Jun 2020 |

Image: The Bio-Rad CFX96 Real-Time PCR Platform (Photo courtesy of Nanyang Technological University).
Alpha-Thalassemia is a group of recessively inherited hemoglobin (Hb) disorders that result from decreased or absent synthesis of α-globin chains, affecting up to 5% of the world's population, mainly prevalent in the Mediterranean coastal countries, Southeast Asia, some African countries, and southern China.
Thalassemia is a group of inherited blood disorders that reduces the ability of blood to circulate oxygen throughout the body. The severity can vary from benign to life threatening; therefore, it is important to identify infants as early as possible who may develop thalassemia-associated symptoms, as well as parents who are carriers. This requires the availability of practical and precise molecular diagnostic tools.
Scientists at the Southern Medical University (Guangzhou, China) developed a rapid, accurate novel assay for non-deletional alpha-thalassemia genotyping based on one-step nested asymmetric polymerase chain reaction (PCR) melting curve analysis, which may enhance prenatal diagnosis, newborn screening, and large-scale population screening. To assess the assay for mass screening, 1,250 blood samples referred to their laboratory for the molecular diagnosis of α-thalassemia were randomly selected. The genomic DNA (gDNA) samples were extracted from peripheral blood lymphocytes using TIANamp Blood DNA Kit (TianGen Biotech Co, Ltd, Beijing, China). The assay was a one-step closed-tube genotyping method that involved nested asymmetric PCR and melting curve analysis running on a Bio-Rad CFX96 Real-Time PCR Platform (Bio-Rad, Hercules, CA, USA).
The investigators tested the ability of the new assay to detect five non-deletional alpha-thalassemia mutations. All five mutations were accurately identified with a concordance rate of 100% in a blind analysis of 255 samples with known genotypes, as determined by other analytic methods including gap-PCR, PCR-reverse dot blot (RDB), or Sanger sequencing. The investigators also tested the capability of the new assay to screen large populations. After testing 1,250 blood samples, the assay showed 100% sensitivity and specificity for all of the targeted mutations. The overall analysis time with the new assay was just under 2.5 hours. This is considerably faster than other molecular genetic testing methods, such as Sanger sequencing, which require 380 minutes, or RDB, which takes 300 minutes.
Wanjun Zhou, PhD, a medical geneticist and senior author of the study, said, “These other methods are unsuitable for use in large-scale screening programs because they have limitations such as cumbersome operation, low throughput, subjective interpretation, and possible laboratory contamination caused by post-PCR open-tube operation. Our results prove that this new assay is accurate, reliable, simple, and rapid and can meet the requirements for clinical diagnosis and mass screening of non-deletional alpha-thalassemia”.
The authors concluded that an assay of nested asymmetric PCR melting analysis for rapid and accurate genotyping of non-deletional α-thalassemia has been established, including the mutations of WS (HBA2: c.369C>G), QS (HBA2: c.377T>C), CS (HBA2: c.427T>C), CD30 (HBA2: c.91_93delGAG), and CD31 (HBA2: c. 95G>A). Moreover, the strategy of this study can effectively overcome the bottleneck of high homology and GC-rich secondary structure. The study was published on May 29, 2020 in The Journal of Molecular Diagnostics.
Related Links:
Southern Medical University
TianGen Biotech Co
Thalassemia is a group of inherited blood disorders that reduces the ability of blood to circulate oxygen throughout the body. The severity can vary from benign to life threatening; therefore, it is important to identify infants as early as possible who may develop thalassemia-associated symptoms, as well as parents who are carriers. This requires the availability of practical and precise molecular diagnostic tools.
Scientists at the Southern Medical University (Guangzhou, China) developed a rapid, accurate novel assay for non-deletional alpha-thalassemia genotyping based on one-step nested asymmetric polymerase chain reaction (PCR) melting curve analysis, which may enhance prenatal diagnosis, newborn screening, and large-scale population screening. To assess the assay for mass screening, 1,250 blood samples referred to their laboratory for the molecular diagnosis of α-thalassemia were randomly selected. The genomic DNA (gDNA) samples were extracted from peripheral blood lymphocytes using TIANamp Blood DNA Kit (TianGen Biotech Co, Ltd, Beijing, China). The assay was a one-step closed-tube genotyping method that involved nested asymmetric PCR and melting curve analysis running on a Bio-Rad CFX96 Real-Time PCR Platform (Bio-Rad, Hercules, CA, USA).
The investigators tested the ability of the new assay to detect five non-deletional alpha-thalassemia mutations. All five mutations were accurately identified with a concordance rate of 100% in a blind analysis of 255 samples with known genotypes, as determined by other analytic methods including gap-PCR, PCR-reverse dot blot (RDB), or Sanger sequencing. The investigators also tested the capability of the new assay to screen large populations. After testing 1,250 blood samples, the assay showed 100% sensitivity and specificity for all of the targeted mutations. The overall analysis time with the new assay was just under 2.5 hours. This is considerably faster than other molecular genetic testing methods, such as Sanger sequencing, which require 380 minutes, or RDB, which takes 300 minutes.
Wanjun Zhou, PhD, a medical geneticist and senior author of the study, said, “These other methods are unsuitable for use in large-scale screening programs because they have limitations such as cumbersome operation, low throughput, subjective interpretation, and possible laboratory contamination caused by post-PCR open-tube operation. Our results prove that this new assay is accurate, reliable, simple, and rapid and can meet the requirements for clinical diagnosis and mass screening of non-deletional alpha-thalassemia”.
The authors concluded that an assay of nested asymmetric PCR melting analysis for rapid and accurate genotyping of non-deletional α-thalassemia has been established, including the mutations of WS (HBA2: c.369C>G), QS (HBA2: c.377T>C), CS (HBA2: c.427T>C), CD30 (HBA2: c.91_93delGAG), and CD31 (HBA2: c. 95G>A). Moreover, the strategy of this study can effectively overcome the bottleneck of high homology and GC-rich secondary structure. The study was published on May 29, 2020 in The Journal of Molecular Diagnostics.
Related Links:
Southern Medical University
TianGen Biotech Co
Latest Hematology News
- Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
- Platelets Could Improve Early and Minimally Invasive Detection of Cancer
- Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
- Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
- First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Novel Tool Uses Deep Learning for Precision Cancer Therapy
Nearly 50 new cancer therapies are approved each year, but selecting the right one for patients with highly individual tumor characteristics remains a major challenge. Physicians struggle to navigate the... Read more
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read moreMicrobiology
view channel
Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Sepsis arises from infection and immune dysregulation, with neutrophils playing a central role in its progression. However, current clinical tools are unable to both isolate these cells and assess their... Read more
New Diagnostic Method Confirms Sepsis Infections Earlier
Sepsis remains one of the most dangerous medical emergencies, often progressing rapidly and becoming fatal without timely intervention. Each hour of delayed treatment in septic shock reduces patient survival... Read more
New Markers Could Predict Risk of Severe Chlamydia Infection
Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
Vaginal health depends on maintaining a balanced microbiome, particularly certain Lactobacillus species. Disruption of this balance, known as dysbiosis, can increase risks of infection, pregnancy complications,... Read morePathology
view channel
Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
High-grade serous carcinoma is a rare diagnosis in cervical biopsies and can be difficult to distinguish from other tumor types. Cervical serous carcinoma is no longer recognized as a primary cervical... Read moreTechnology
view channel
Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Respiratory tract infections (LRTIs) are leading causes of illness and death worldwide, particularly among vulnerable populations such as the elderly, young children, and those with compromised immune systems.... Read moreIndustry
view channel
VedaBio Partners With Mammoth Biosciences to Expand CRISPR-Based Diagnostic Technologies
VedaBio (San Diego, CA, USA) has entered into a non-exclusive license agreement with Mammoth Biosciences (Brisbane, CA, USA) for the use of select CRISPR-based technologies in diagnostic applications.... Read more