Soluble Transferrin Receptor Investigated in Iron Deficiency Anemia
By LabMedica International staff writers Posted on 25 May 2020 |

Image: The UniCel DxI 800 Access Immunoassay System (Photo courtesy of Beckman Coulter).
Anemia is a global public health problem and approximately 30% of the world's population suffered from anemia, with children and pregnant women being the most affected. Microcytic hypochromic anemia is a common type of anemia, and iron deficiency anemia (IDA) is the most common manifestation of this anemia.
The current gold standard for an IDA diagnosis is iron staining of a bone marrow smear. Transferrin receptor (TfR) is a transmembrane glycoprotein. Iron is transported by binding to specific TfR‐transferrin complex and thereby released into cells. Through proteolysis, TfR produces soluble transferrin receptor (sTfR) in the serum, whose concentration is proportional to the TfR concentration.
Laboratory medical scientists at the Peking Union Medical College Hospital (Beijing, China) enrolled 436 subjects from March 2014 to August 2015. Among these, 118 were patients with IDA, 161 were patients with anemia of chronic disease (ACD), 60 were patients with chronic diseases with iron deficiency anemia (CIDA), and 97 were apparently healthy subjects (HS).
The scientists used the DXI 800 automatic immunoassay analyzer (Beckman Coulter, Brea, CA, USA), the Cobas c702 automatic biochemistry analyzer (Roche Diagnostics, Risch-Rotkreuz, Switzerland), and the Siemens BNII special protein analyzer (Siemens Healthineers, Erlangen, Germany) with their corresponding sTfR reagents and calibrators. The sTfR concentrations in two groups of patient specimens with high‐level and low‐level sTfR concentrations and in quality control materials were measured four times a day for five consecutive days to evaluate the precision of the three methods.
The investigators reported that for the diagnosis of IDA, the cutoff points of sTfR measured by the chemiluminescent, immunoturbidimetric, and immunonephelometric assays were 2.91, 6.70, and 2.48 mg/L, respectively. The corresponding sensitivities were 85.59%, 85.59%, and 85.59%, the specificities were 91.47%, 90.31%, and 90.70%, and area under the curve was 0.943, 0.944, and 0.936, respectively. The sTfR concentrations measured by the different methods were significantly higher in the IDA and CIDA groups than in the other two groups.
The authors concluded that the different sTfR measurement methods showed similar diagnostic value in diagnosing iron deficiency and identifying whether ACD was combined with iron deficiency. However, there were large differences in the measurement results obtained with the different methods, and their cutoff points also varied. Therefore, when sTfR is used in the course of clinical diagnosis and treatment and to establish relevant diagnostic criteria and guidelines, clinicians should pay attention to the differences in the results between different measurement methods. The study was first published on April 22, 2020 in the Journal of Clinical Laboratory Analysis.
The current gold standard for an IDA diagnosis is iron staining of a bone marrow smear. Transferrin receptor (TfR) is a transmembrane glycoprotein. Iron is transported by binding to specific TfR‐transferrin complex and thereby released into cells. Through proteolysis, TfR produces soluble transferrin receptor (sTfR) in the serum, whose concentration is proportional to the TfR concentration.
Laboratory medical scientists at the Peking Union Medical College Hospital (Beijing, China) enrolled 436 subjects from March 2014 to August 2015. Among these, 118 were patients with IDA, 161 were patients with anemia of chronic disease (ACD), 60 were patients with chronic diseases with iron deficiency anemia (CIDA), and 97 were apparently healthy subjects (HS).
The scientists used the DXI 800 automatic immunoassay analyzer (Beckman Coulter, Brea, CA, USA), the Cobas c702 automatic biochemistry analyzer (Roche Diagnostics, Risch-Rotkreuz, Switzerland), and the Siemens BNII special protein analyzer (Siemens Healthineers, Erlangen, Germany) with their corresponding sTfR reagents and calibrators. The sTfR concentrations in two groups of patient specimens with high‐level and low‐level sTfR concentrations and in quality control materials were measured four times a day for five consecutive days to evaluate the precision of the three methods.
The investigators reported that for the diagnosis of IDA, the cutoff points of sTfR measured by the chemiluminescent, immunoturbidimetric, and immunonephelometric assays were 2.91, 6.70, and 2.48 mg/L, respectively. The corresponding sensitivities were 85.59%, 85.59%, and 85.59%, the specificities were 91.47%, 90.31%, and 90.70%, and area under the curve was 0.943, 0.944, and 0.936, respectively. The sTfR concentrations measured by the different methods were significantly higher in the IDA and CIDA groups than in the other two groups.
The authors concluded that the different sTfR measurement methods showed similar diagnostic value in diagnosing iron deficiency and identifying whether ACD was combined with iron deficiency. However, there were large differences in the measurement results obtained with the different methods, and their cutoff points also varied. Therefore, when sTfR is used in the course of clinical diagnosis and treatment and to establish relevant diagnostic criteria and guidelines, clinicians should pay attention to the differences in the results between different measurement methods. The study was first published on April 22, 2020 in the Journal of Clinical Laboratory Analysis.
Latest Hematology News
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
- New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds
- Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Channels
Clinical Chemistry
view channelMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read moreMolecular Diagnostics
view channel
First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis
Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more
New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests
Tuberculosis (TB), the deadliest infectious disease globally, is responsible for infecting an estimated 10 million people each year and causing over 1 million deaths annually. While chest X-rays and molecular... Read more
Biomarker Discovery Paves Way for Blood Tests to Detect and Treat Osteoarthritis
The number of individuals affected by osteoarthritis is projected to exceed 1 billion by 2050. The primary risk factor for this common, often painful chronic joint condition is aging, and, like aging itself,... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read more
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read more
AI-Driven Analysis of Digital Pathology Images to Improve Pediatric Sarcoma Subtyping
Pediatric sarcomas are rare and diverse tumors that can develop in various types of soft tissue, such as muscle, tendons, fat, blood or lymphatic vessels, nerves, or the tissue surrounding joints.... Read more
AI-Based Model Predicts Kidney Cancer Therapy Response
Each year, nearly 435,000 individuals are diagnosed with clear cell renal cell carcinoma (ccRCC), making it the most prevalent subtype of kidney cancer. When the disease spreads, anti-angiogenic therapies... Read more
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more