Urine-Based Kidney Transplantation Rejection Risk Assay Launched
By LabMedica International staff writers Posted on 30 Mar 2020 |

Image: Schematic diagram of a urine score for noninvasive accurate diagnosis and prediction of kidney transplant rejection study (Photo courtesy of the University of California, San Francisco).
For kidney transplant recipients, prompt and accurate detection of transplant rejection is vital for timely intervention. Unfortunately, the gold standard for diagnosis of rejection is kidney biopsy, an invasive procedure.
To diagnose acute rejection in kidney transplant patients, clinicians usually extract several small transplanted kidney samples every few months post-transplant, in addition to measuring the patient's serum creatinine levels. However, kidney biopsies can be invasive and expensive, while serum creatinine levels are often inaccurate and not sensitive enough to detect transplant rejection.
Scientists from the University of California, San Francisco (San Francisco, CA, USA) and their colleagues collected a total of 601 prospective urine samples from both pediatric and adult renal allograft recipients immediately before a renal allograft biopsy. Each sample was then paired with a renal transplant biopsy and classified into the following diagnoses: stable (170); acute rejection (AR, 103); borderline AR (bAR, 50); and BK virus nephropathy (9). The team also collected additional urine samples from 32 patients with AR before the rejection episode and paired them with biopsies.
The team evaluated a noninvasive, spot urine–based diagnostic assay based on measurements of six urinary DNA, protein, and metabolic biomarkers. The team used the QiSant assay (Nephrosant, San Francisco, CA, USA) that analyzes six biomarkers from 4 mL of urine sample: the amount of cell-free DNA (cfDNA); the fraction of methylated cfDNA; the proteins clusterin and creatinine; the inflammation marker CXCL10; and total protein amount in the urine. The assay uses a proprietary enzyme-linked immunosorbent (ELISA)-based tool, including a 5' biotinylated oligonucleated immunoprobe to target cfDNA fragments, and artificial intelligence to estimate the likelihood of acute kidney rejection. After collecting patient samples, the scientists developed a composite Q score — ranging from 0 to 100 — on all six biomarkers in a training set of 39 AR and 72 stable patients (STA).
In the first validation set, which had 32 AR patients and 71 STA patients, the group found that the score between the patient types had about a 91% clinical sensitivity and a 92% clinical specificity. Meanwhile, in a second validation set of 32 AR patients and 27 STA patients, the team found that the scaled score had 100% sensitivity and 96% specificity. Most patients with samples (159) with scores above the AR threshold had a clinical diagnosis of active AR, early AR, or went on to develop biopsy-confirmed AR up to 200 days after using the QiSant assay.
The authors concluded that they had demonstrated the clinical utility of this assay for predicting AR before a rise in the serum creatinine, enabling earlier detection of rejection than currently possible by standard of care tests. This noninvasive, sensitive, and quantitative approach is a robust and informative method for the rapid and routine monitoring of renal allografts. The study was published on March 18, 2020 in the journal Science Translational Medicine.
Related Links:
University of California, San Francisco
Nephrosant
To diagnose acute rejection in kidney transplant patients, clinicians usually extract several small transplanted kidney samples every few months post-transplant, in addition to measuring the patient's serum creatinine levels. However, kidney biopsies can be invasive and expensive, while serum creatinine levels are often inaccurate and not sensitive enough to detect transplant rejection.
Scientists from the University of California, San Francisco (San Francisco, CA, USA) and their colleagues collected a total of 601 prospective urine samples from both pediatric and adult renal allograft recipients immediately before a renal allograft biopsy. Each sample was then paired with a renal transplant biopsy and classified into the following diagnoses: stable (170); acute rejection (AR, 103); borderline AR (bAR, 50); and BK virus nephropathy (9). The team also collected additional urine samples from 32 patients with AR before the rejection episode and paired them with biopsies.
The team evaluated a noninvasive, spot urine–based diagnostic assay based on measurements of six urinary DNA, protein, and metabolic biomarkers. The team used the QiSant assay (Nephrosant, San Francisco, CA, USA) that analyzes six biomarkers from 4 mL of urine sample: the amount of cell-free DNA (cfDNA); the fraction of methylated cfDNA; the proteins clusterin and creatinine; the inflammation marker CXCL10; and total protein amount in the urine. The assay uses a proprietary enzyme-linked immunosorbent (ELISA)-based tool, including a 5' biotinylated oligonucleated immunoprobe to target cfDNA fragments, and artificial intelligence to estimate the likelihood of acute kidney rejection. After collecting patient samples, the scientists developed a composite Q score — ranging from 0 to 100 — on all six biomarkers in a training set of 39 AR and 72 stable patients (STA).
In the first validation set, which had 32 AR patients and 71 STA patients, the group found that the score between the patient types had about a 91% clinical sensitivity and a 92% clinical specificity. Meanwhile, in a second validation set of 32 AR patients and 27 STA patients, the team found that the scaled score had 100% sensitivity and 96% specificity. Most patients with samples (159) with scores above the AR threshold had a clinical diagnosis of active AR, early AR, or went on to develop biopsy-confirmed AR up to 200 days after using the QiSant assay.
The authors concluded that they had demonstrated the clinical utility of this assay for predicting AR before a rise in the serum creatinine, enabling earlier detection of rejection than currently possible by standard of care tests. This noninvasive, sensitive, and quantitative approach is a robust and informative method for the rapid and routine monitoring of renal allografts. The study was published on March 18, 2020 in the journal Science Translational Medicine.
Related Links:
University of California, San Francisco
Nephrosant
Latest Molecular Diagnostics News
- 2-Hour Cancer Blood Test to Transform Tumor Detection
- Ultrasensitive Test Could Identify Earliest Molecular Signs of Metastatic Relapse in Breast Cancer Patients
- Automated High Throughput Immunoassay Test to Advance Neurodegenerative Clinical Research
- Blood Test Could Detect Proteins Linked to Alzheimer's Disease and Memory Loss
- Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear
- First-of-Its-Kind Blood Test Detects Over 50 Cancer Types
- Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk
- Single Cell RNA Sequencing Could Enable Non-Invasive Blood Disorder Diagnosis
- Blood Test Identifies HPV-Associated Head and Neck Cancers 10 Years Before Symptoms
- Giant DNA Elements Discovered in Mouth Could Impact Oral Health
- Simple Blood Test Spots Disease Through Metabolic Distortion
- Simple Blood Test Could Streamline Early Alzheimer's Detection
- Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer
- ELISA-Based Test Uses Gynecologic Fluids to Detect Endometrial Cancer
- Comprehensive Tumor Profiling Kit Decentralizes and Standardizes Oncology Testing
- Automated Syndromic Testing System Combines Unparalleled Throughput with Simple Workflow
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreMolecular Diagnostics
view channel
2-Hour Cancer Blood Test to Transform Tumor Detection
Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more
Automated High Throughput Immunoassay Test to Advance Neurodegenerative Clinical Research
Alzheimer’s disease and other neurodegenerative disorders remain difficult to diagnose and monitor accurately due to limitations in existing biomarkers. Traditional tau and phosphorylated tau measurements... Read more
Ultrasensitive Test Could Identify Earliest Molecular Signs of Metastatic Relapse in Breast Cancer Patients
HR+ (hormone receptor-positive) HER2- (human epidermal growth factor receptor 2-negative) breast cancer represents over 70% of all breast cancer cases and carries a significant risk of late recurrence.... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Novel Tool Uses Deep Learning for Precision Cancer Therapy
Nearly 50 new cancer therapies are approved each year, but selecting the right one for patients with highly individual tumor characteristics remains a major challenge. Physicians struggle to navigate the... Read more
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read moreMicrobiology
view channel
Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Sepsis arises from infection and immune dysregulation, with neutrophils playing a central role in its progression. However, current clinical tools are unable to both isolate these cells and assess their... Read more
New Diagnostic Method Confirms Sepsis Infections Earlier
Sepsis remains one of the most dangerous medical emergencies, often progressing rapidly and becoming fatal without timely intervention. Each hour of delayed treatment in septic shock reduces patient survival... Read more
New Markers Could Predict Risk of Severe Chlamydia Infection
Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
Vaginal health depends on maintaining a balanced microbiome, particularly certain Lactobacillus species. Disruption of this balance, known as dysbiosis, can increase risks of infection, pregnancy complications,... Read moreTechnology
view channel
Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Respiratory tract infections (LRTIs) are leading causes of illness and death worldwide, particularly among vulnerable populations such as the elderly, young children, and those with compromised immune systems.... Read moreIndustry
view channel
VedaBio Partners With Mammoth Biosciences to Expand CRISPR-Based Diagnostic Technologies
VedaBio (San Diego, CA, USA) has entered into a non-exclusive license agreement with Mammoth Biosciences (Brisbane, CA, USA) for the use of select CRISPR-based technologies in diagnostic applications.... Read more