We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

NGS Identifies Genomic Characteristics of Pediatric Leukemia

By LabMedica International staff writers
Posted on 19 Mar 2020
Print article
Image: The Agilent 4200 TapeStation system is an established automated electrophoresis tool for DNA and RNA sample quality control (Photo courtesy of Agilent Technologies).
Image: The Agilent 4200 TapeStation system is an established automated electrophoresis tool for DNA and RNA sample quality control (Photo courtesy of Agilent Technologies).
Pediatric leukemias have a diverse genomic landscape associated with complex structural variants, including gene fusions, insertions and deletions, and single nucleotide variants. Routine karyotype and fluorescence in situ hybridization (FISH) techniques lack sensitivity for smaller genomic alternations.

Minimal residual disease (MRD; more aptly named Measurable Residual Disease) is the detection of residual leukemia following therapy, most commonly by flow cytometry. MRD, as measured by multiparameter flow cytometry is perhaps one of the most important predictors of outcome in children with acute myelogenous leukemia.

Hematologists at the Nemours/Alfred I. duPont Hospital for Children (Wilmington, DE, USA) and their associates collected 32 primary bone marrow samples from pediatric leukemia and five adult leukemia subjects, cell line MV4–11, and an umbilical cord sample. Patient samples were collected at diagnosis, end of the first treatment, and relapse. The Nemours samples consisted of six acute myelogenous leukemia (AML) subjects, one acute promyelocytic leukemia (APL) subject, 17 preB-cell acute lymphoblastic leukemia (ALL) subjects and three T-cell ALL subjects.

Nucleic acid was extracted from each sample. DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen, Germantown, MD, USA). Nucleic acid quantity and quality was then assessed using the TapeStation 4200 (Agilent Technologies, Santa Clara, CA, USA). To optimize detection of structural and copy number variants in DNA and RNA in genes more closely affiliated with pediatric leukemia, the team prepared DNA- error-corrected sequencing (ECS) libraries using a customized VariantPlex kit (ArcherDx, Boulder, CO, USA) or a human cancer transcriptome assay.

The scientists reported that similar to flow cytometry for ALL MRD, the limit of detection (LOD) for point mutations by their sequencing strategies was ≥0.001. For DNA structural variants, FLT3 internal tandem duplication (ITD) positive cell line and patient samples showed a LOD of ≥0.001 in addition to previously unknown copy number losses in leukemia genes. ECS in RNA identified multiple novel gene fusions, including a SPANT-ABL gene fusion in an ALL patient, which could have been used to alter therapy.

Collectively, ECS for RNA demonstrated a quantitative and complex landscape of RNA molecules with 12% of the molecules representing gene fusions, 12% exon duplications, 8% exon deletions, and 68% with retained introns. Droplet digital polymerase chain reaction validation of ECS-RNA confirmed results to single mRNA molecule quantities.

The authors concluded that collectively, the assays enabled a highly sensitive, comprehensive, and simultaneous analysis of various clonal leukemic mutations, which can be tracked across disease states (diagnosis, end of induction, and relapse) with a high degree of sensitivity. The study was published on March 4, 2020 in the journal BMC Medical Genomics.

Related Links:
Nemours/Alfred I. duPont Hospital for Children
Qiagen
Agilent Technologies
ArcherDx


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HbA1c Test
HbA1c Rapid Test
New
Benchtop Cooler
PCR-Cooler & PCR-Rack

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more