Novel Biotech-Based Field or Lab Assay for Detection of Fluoride
By LabMedica International staff writers Posted on 26 Dec 2019 |

Image: The test tube on the left shows a real positive result from water sampled in Costa Rica. The middle tube is a negative control. The tube on the right is a positive control (Photo courtesy of Dr. Julius B. Lucks, Northwestern University)
A simple, yet sophisticated biotech-based assay for the detection of fluoride levels was successfully tested in the laboratory and in the field.
Around one-third of the human population drinks water from groundwater resources. Of this, about 10%, approximately three hundred million people, obtain water from groundwater resources that are heavily contaminated with arsenic or fluoride. When consumed in high amounts over long periods of time, fluoride can cause skeletal fluorosis, a painful condition that hardens bones and joints.
Current laboratory methods to measure fluoride levels in groundwater are expensive and time consuming and may not be available in developing countries. Investigators at Northwestern University (Evanston, IL, USA) suggest replacing this methodology with a rapid, easy-to-use, inexpensive biotech-based assay.
This assay comprises a biosensor consisting of a cell-free system containing a DNA template that encodes a fluoride-responsive riboswitch, which regulates genes that produce a fluorescent or colorimetric output. A riboswitch is a regulatory segment of a messenger RNA molecule that binds a small molecule, resulting in a change in production of the proteins encoded by the mRNA. Thus, an mRNA that contains a riboswitch is directly involved in regulating its own activity, in response to the concentrations of its effector molecule. In the current assay system, the presence of fluoride causes the RNA to produce a protein enzyme that makes a yellow pigment that is readily visible to the naked eye.
Senior author Dr. Julius Lucks, associate professor of chemical and biological engineering at Northwestern University, said, "RNA folds into a little pocket and waits for a fluoride ion. The ion can fit perfectly into that pocket. If the ion shows up, then RNA expresses a gene that turns the water yellow. If the ion does not show up, then RNA changes shape and stops the process. It is literally a switch."
Reagents for individualized tests may be lyophilized for long-term storage. Following reconstitution with 20 microliters of liquid sample and incubation at room temperature for two hours, the test could detect fluoride at levels above two parts per million, the [U.S.] Environmental Protection Agency’s most stringent regulatory standard, in both laboratory and field conditions.
The prototype assay was successfully tested in Costa Rica, where the Irazu volcano causes heavy contamination of the groundwater with fluoride.
"In the United States, we hear about fluoride all the time because it is in toothpaste and the municipal water supply," said Dr. Lucks. "It makes calcium fluoride, which is very hard, so it strengthens our tooth enamel. But above a certain level, fluoride also hardens joints. This mostly is not an issue in the United States. But it can be a debilitating problem in other countries if not identified and addressed. Every test on these field samples worked. It is exciting that it works in the lab, but it is much more important to know that it works in the field. We want it to be an easy, practical solution for people who have the greatest need. Our goal is to empower individuals to monitor the presence of fluoride in their own water."
The fluoride detection test was described in the December 13, 2019, online edition of the journal ACS Synthetic Biology.
Related Links:
Northwestern University
Around one-third of the human population drinks water from groundwater resources. Of this, about 10%, approximately three hundred million people, obtain water from groundwater resources that are heavily contaminated with arsenic or fluoride. When consumed in high amounts over long periods of time, fluoride can cause skeletal fluorosis, a painful condition that hardens bones and joints.
Current laboratory methods to measure fluoride levels in groundwater are expensive and time consuming and may not be available in developing countries. Investigators at Northwestern University (Evanston, IL, USA) suggest replacing this methodology with a rapid, easy-to-use, inexpensive biotech-based assay.
This assay comprises a biosensor consisting of a cell-free system containing a DNA template that encodes a fluoride-responsive riboswitch, which regulates genes that produce a fluorescent or colorimetric output. A riboswitch is a regulatory segment of a messenger RNA molecule that binds a small molecule, resulting in a change in production of the proteins encoded by the mRNA. Thus, an mRNA that contains a riboswitch is directly involved in regulating its own activity, in response to the concentrations of its effector molecule. In the current assay system, the presence of fluoride causes the RNA to produce a protein enzyme that makes a yellow pigment that is readily visible to the naked eye.
Senior author Dr. Julius Lucks, associate professor of chemical and biological engineering at Northwestern University, said, "RNA folds into a little pocket and waits for a fluoride ion. The ion can fit perfectly into that pocket. If the ion shows up, then RNA expresses a gene that turns the water yellow. If the ion does not show up, then RNA changes shape and stops the process. It is literally a switch."
Reagents for individualized tests may be lyophilized for long-term storage. Following reconstitution with 20 microliters of liquid sample and incubation at room temperature for two hours, the test could detect fluoride at levels above two parts per million, the [U.S.] Environmental Protection Agency’s most stringent regulatory standard, in both laboratory and field conditions.
The prototype assay was successfully tested in Costa Rica, where the Irazu volcano causes heavy contamination of the groundwater with fluoride.
"In the United States, we hear about fluoride all the time because it is in toothpaste and the municipal water supply," said Dr. Lucks. "It makes calcium fluoride, which is very hard, so it strengthens our tooth enamel. But above a certain level, fluoride also hardens joints. This mostly is not an issue in the United States. But it can be a debilitating problem in other countries if not identified and addressed. Every test on these field samples worked. It is exciting that it works in the lab, but it is much more important to know that it works in the field. We want it to be an easy, practical solution for people who have the greatest need. Our goal is to empower individuals to monitor the presence of fluoride in their own water."
The fluoride detection test was described in the December 13, 2019, online edition of the journal ACS Synthetic Biology.
Related Links:
Northwestern University
Latest Technology News
- Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
- Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
- Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
- Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
- Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
- Smartphones Could Diagnose Diseases Using Infrared Scans
- Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
- 3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
- POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read more
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more