LDL Subclasses Ratio Predicts Cardiovascular Disease Risk More Accurately than LDL-cholesterol Alone
|
By LabMedica International staff writers Posted on 27 Nov 2019 |

Image: Small particle LDL has been associated with the progression of atherosclerosis and blockage the artery lumen, because it can carry cholesterol into smaller vessels. As atheroma enlarges, the arterial wall ruptures and releases blood clots that lead to narrowing of the artery (Photo courtesy of Wikimedia Commons)
Measurement of low-density lipoprotein (LDL) cholesterol may a less effective way to predict risk of cardiovascular disease than is the further analysis of the relative proportions of LDL subclasses.
About 75% of patients with heart attacks have cholesterol levels, particularly LDL-cholesterol levels - that do not indicate a high risk for a cardiovascular event. LDL comprises a diverse group of macromolecules that may be grouped according to size: large low density LDL particles are described as subclass A, and small high density LDL particles are subclass B. Subclass B has been associated by some with a higher risk for coronary heart disease. This is thought to be because the smaller particles are more easily able to penetrate the endothelium of arterial walls. Subclass I, for intermediate, indicates that most LDL particles are very close in size to the normal gaps in the endothelium.
A recent study carried out at Ohio University (Athens, USA) suggested that contrary to the current [U.S.] national guidelines it was not the total LDL, rather it was the concentration of subclass B in relation to subclasses A and/or I, that should be used for diagnosis of atherosclerosis and the risk of heart attack.
The investigators reached this conclusion after utilizing a nanomedical approach. They used nanosensors with a diameter of less than 300 nanometers, to simultaneously measure, in near-real time, the concentration of cytoprotective nitric oxide (NO) and cytotoxic peroxynitrite (ONOO−) released from a single endothelial cell exposed to each of the LDL subclasses (A, B, and I). The ratio of NO concentration to ONOO− concentration (NO)/(ONOO−) was used as a marker of oxidative stress and the dysfunction of the enzyme endothelial nitric oxide synthase (eNOS).
Results revealed that all n-LDL (native LDL) and ox-LDL (oxidized LDL) subclasses unfavorably shifted the balance of the (NO)/(ONOO−) ratio, imposing toxic effects such as: elevated oxidative stress, a shortage of cytoprotective NO, and the up-regulation of adhesion molecules in the endothelium. However, subclass B dramatically shifted (NO)/(ONOO−) balance to a very low level, causing significant damage to endothelial function.
"Our studies can explain why a correlation of total "bad" cholesterol with a risk of heart attack is poor and dangerously misleading – it is wrong three quarters of the time," said senior author Dr. Tadeusz Malinski, professor of chemistry and biochemistry at Ohio University. "These national guidelines may seriously underestimate the noxious effects of LDL cholesterol, especially in cases where the content of subclass B in total LDL is high (50% or higher). Understanding this could lead to improving the accuracy of diagnosis for the evaluation of cardiovascular disease rates. Analyzing the mixture of LDL subclasses may provide a parameter-based model for an early medical diagnosis of estimating the risk of cardiovascular disease."
The study was published in the November 18, 2019, issue of the International Journal of Nanomedicine.
Related Links:
Ohio University
About 75% of patients with heart attacks have cholesterol levels, particularly LDL-cholesterol levels - that do not indicate a high risk for a cardiovascular event. LDL comprises a diverse group of macromolecules that may be grouped according to size: large low density LDL particles are described as subclass A, and small high density LDL particles are subclass B. Subclass B has been associated by some with a higher risk for coronary heart disease. This is thought to be because the smaller particles are more easily able to penetrate the endothelium of arterial walls. Subclass I, for intermediate, indicates that most LDL particles are very close in size to the normal gaps in the endothelium.
A recent study carried out at Ohio University (Athens, USA) suggested that contrary to the current [U.S.] national guidelines it was not the total LDL, rather it was the concentration of subclass B in relation to subclasses A and/or I, that should be used for diagnosis of atherosclerosis and the risk of heart attack.
The investigators reached this conclusion after utilizing a nanomedical approach. They used nanosensors with a diameter of less than 300 nanometers, to simultaneously measure, in near-real time, the concentration of cytoprotective nitric oxide (NO) and cytotoxic peroxynitrite (ONOO−) released from a single endothelial cell exposed to each of the LDL subclasses (A, B, and I). The ratio of NO concentration to ONOO− concentration (NO)/(ONOO−) was used as a marker of oxidative stress and the dysfunction of the enzyme endothelial nitric oxide synthase (eNOS).
Results revealed that all n-LDL (native LDL) and ox-LDL (oxidized LDL) subclasses unfavorably shifted the balance of the (NO)/(ONOO−) ratio, imposing toxic effects such as: elevated oxidative stress, a shortage of cytoprotective NO, and the up-regulation of adhesion molecules in the endothelium. However, subclass B dramatically shifted (NO)/(ONOO−) balance to a very low level, causing significant damage to endothelial function.
"Our studies can explain why a correlation of total "bad" cholesterol with a risk of heart attack is poor and dangerously misleading – it is wrong three quarters of the time," said senior author Dr. Tadeusz Malinski, professor of chemistry and biochemistry at Ohio University. "These national guidelines may seriously underestimate the noxious effects of LDL cholesterol, especially in cases where the content of subclass B in total LDL is high (50% or higher). Understanding this could lead to improving the accuracy of diagnosis for the evaluation of cardiovascular disease rates. Analyzing the mixture of LDL subclasses may provide a parameter-based model for an early medical diagnosis of estimating the risk of cardiovascular disease."
The study was published in the November 18, 2019, issue of the International Journal of Nanomedicine.
Related Links:
Ohio University
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







