Gut Bacteria Linked to High Blood Pressure and Depression
By LabMedica International staff writers Posted on 17 Sep 2019 |

Image: This infographic illustrates the connection between the brain, central nervous system and other organs and how they interact with a person\'s gut microbes to show different patterns from people with high blood pressure plus depression; high blood pressure without depression; depression with healthy blood pressure; or healthy subjects without depression or high blood pressure (Photo courtesy of Professor Bruce R. Stevens, PhD).
The microbiome is the genetic material of all the microbes, bacteria, fungi, protozoa and viruses that live on and inside the human body. The number of genes in all the microbes in one person's microbiome is 200 times the number of genes in the human genome.
A study of human gut bacteria, known as the gut microbiome, suggests that high blood pressure with depression may be a completely different disease than high blood pressure without depression. The gut may be targeted someday to prevent, diagnose and selectively treat different forms of high blood pressure with or without depression.
Scientists from the University of Florida College of Medicine (Gainesville, FL, USA) made a study of bacteria in the gut identified differences between people with high blood pressure compared to those with high blood pressure plus depression. They isolated DNA (deoxyribonucleic acid, the carrier of genetic information) from gut bacteria obtained from the stool samples of 105 volunteers. They used a new technique involving artificial-intelligence software to analyze the bacteria, which revealed four distinct types of bacterial genes and signature molecules.
Surprisingly, the investigators discovered unique patterns of bacteria from people with 1) high blood pressure plus depression; 2) high blood pressure without depression; 3) depression with healthy blood pressure; or 4) healthy subjects without depression or high blood pressure. The authors concluded that the results suggest different medical mechanisms of high blood pressure that correlate with signature molecules produced by gut bacteria. These molecules are thought to impact the cardiovascular system, metabolism, hormones and the nervous system.
Bruce R. Stevens, PhD, a Professor of Physiology & Functional Genomics, Medicine and Psychiatry and the lead author of the study, said, “People are 'meta-organisms' made up of roughly equal numbers of human cells and bacteria. Gut bacteria ecology interacts with our bodily physiology and brains, which may steer some people towards developing high blood pressure and depression. We believe we have uncovered new forms of high blood pressure: 'Depressive Hypertension' (high blood pressure with depression), which may be a completely different disease than 'Non-Depressive Hypertension' (high blood pressure without depression), which are each different from 'Non-Hypertensive Depression.” The study was presented at the American Heart Association's Hypertension 2019 Scientific Sessions on September 5, 2019, in New Orleans, LA, USA.
Related Links:
University of Florida College of Medicine
A study of human gut bacteria, known as the gut microbiome, suggests that high blood pressure with depression may be a completely different disease than high blood pressure without depression. The gut may be targeted someday to prevent, diagnose and selectively treat different forms of high blood pressure with or without depression.
Scientists from the University of Florida College of Medicine (Gainesville, FL, USA) made a study of bacteria in the gut identified differences between people with high blood pressure compared to those with high blood pressure plus depression. They isolated DNA (deoxyribonucleic acid, the carrier of genetic information) from gut bacteria obtained from the stool samples of 105 volunteers. They used a new technique involving artificial-intelligence software to analyze the bacteria, which revealed four distinct types of bacterial genes and signature molecules.
Surprisingly, the investigators discovered unique patterns of bacteria from people with 1) high blood pressure plus depression; 2) high blood pressure without depression; 3) depression with healthy blood pressure; or 4) healthy subjects without depression or high blood pressure. The authors concluded that the results suggest different medical mechanisms of high blood pressure that correlate with signature molecules produced by gut bacteria. These molecules are thought to impact the cardiovascular system, metabolism, hormones and the nervous system.
Bruce R. Stevens, PhD, a Professor of Physiology & Functional Genomics, Medicine and Psychiatry and the lead author of the study, said, “People are 'meta-organisms' made up of roughly equal numbers of human cells and bacteria. Gut bacteria ecology interacts with our bodily physiology and brains, which may steer some people towards developing high blood pressure and depression. We believe we have uncovered new forms of high blood pressure: 'Depressive Hypertension' (high blood pressure with depression), which may be a completely different disease than 'Non-Depressive Hypertension' (high blood pressure without depression), which are each different from 'Non-Hypertensive Depression.” The study was presented at the American Heart Association's Hypertension 2019 Scientific Sessions on September 5, 2019, in New Orleans, LA, USA.
Related Links:
University of Florida College of Medicine
Latest Pathology News
- New Multi-Omics Tool Illuminates Cancer Progression
- New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
- New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
- Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
- High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
- AI Tool Detects Hidden Warning Signs of Disease Inside Single Cells
- Automated Tool Detects Early Warning Signs of Breast Cancer
- New Software Tool Improves Analysis of Complex Spatial Data from Tissues
- AI Tool Helps Surgeons Distinguish Aggressive Glioblastoma from Other Brain Cancers in Real-Time
- New Tool Could Revolutionize Acute Leukemia Diagnosis
- New Microscope Promises to Speed Up Medical Diagnostics
- ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours
- Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
- Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
- Mobile-Compatible AI-Powered System to Revolutionize Malaria Diagnosis
- Compact AI-Powered Microscope Enables Rapid Cost-Effective Cancer Scoring
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Rapid POC Diagnostic Test Detects Asymptomatic Malaria Cases
Malaria is one of the leading causes of preventable deaths worldwide, with around 95% of all deaths occurring in Africa. Asymptomatic infections are a major driver of ongoing transmission because individuals... Read more
Improved DNA Sequencing Tool Uncovers Hidden Mutations Driving Cancer
As humans age, their cells naturally accumulate DNA mutations, most of which are harmless, but some can give cells a growth advantage and initiate cancer. Detecting these rare mutations in normal tissues... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more
Luminescent Probe Measures Immune Cell Activity in Real Time
The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more
Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
When a patient enters the emergency department in critical condition, clinicians must rapidly decide whether the patient has an infection, whether it is bacterial or viral, and whether immediate treatment... Read morePathology
view channel
New Multi-Omics Tool Illuminates Cancer Progression
Tracking how cancers evolve into more aggressive and therapy-resistant forms has long been a challenge for researchers. Many current tools can only capture limited genetic information from tumor samples,... Read more
New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
Determining the genetic profile of brain tumors during surgery is crucial for improving patient outcomes, but conventional analysis methods can take up to two days, delaying critical decisions.... Read more
New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
Skin cancer is the most common malignancy worldwide, and accurately assessing tumor invasion or treatment response remains a major clinical challenge. Current imaging methods, such as confocal microscopy... Read more
Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
Glioblastoma (GBM) is the most aggressive form of brain cancer, known for rapid growth, recurrence, and resistance to treatment. Understanding how tumors respond to therapy remains challenging since imaging... Read moreTechnology
view channel
Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
Rapid and sensitive detection of small extracellular vesicles (sEVs)—key biomarkers in cancer and organ health monitoring—remains challenging due to the need for multiple preprocessing steps and bulky... Read more
AI Algorithm Assesses Progressive Decline in Kidney Function
Chronic kidney disease (CKD) affects more than 700 million people worldwide and remains a major global health challenge. The condition often progresses silently, and many patients remain undiagnosed until... Read more
Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
Influenza is one of the most dangerous infectious diseases worldwide, claiming around half a million lives each year. What makes it particularly insidious is that flu viruses are contagious even before... Read more
3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
Early-stage disease diagnosis depends on the ability to detect biomarkers with exceptional sensitivity and precision. However, traditional biosensing technologies struggle with achieving this at the micro-scale,... Read moreIndustry
view channel
Bio-Techne and Oxford Nanopore to Accelerate Development of Genetics Portfolio
Bio-Techne Corporation (Minneapolis, MN, USA) has expanded its agreement with Oxford Nanopore Technologies (Oxford, UK) to broaden Bio-Techne's ability to develop a portfolio of genetic products on Oxford... Read more
Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders
Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more